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UsING R FOR DATA ANALYSIS

A Best Practice for Research

KeN KeLLEY, KEKE LAI, AND Po-Ju Wu

is an extremely flexible statistics program-
Rming language and environment that is

Open Source and freely available for all
mainstream operating systems. R has recently
experienced an “explosive growth in use and in
user contributed software” (Tierney, 2005, p. 7).
The “user-contributed software” is one of the
most unique and beneficial aspects of R, as a large
number of users have contributed code for
implementing some of the most up-to-date sta-
tistical methods, in addition to R implementing
essentially all standard statistical analyses.
Because of R’s Open Source structure and a com-
munity of users dedicated to making R of the
highest quality, the computer code on which the
methods are based is openly critiqued and
improved.! The flexibility of R is arguably
unmatched by any other statistics program,
as its object-oriented programming language
allows for the creation of functions that perform
customized procedures and/or the automation of
tasks that are commonly performed. This flexibility,
however, has also kept some researchers away
from R. There seems to be a misperception that
learning to use R is a daunting challenge. The
goals of this chapter include the following: (a)
convey that the time spent learning R, which in
many situations is a relatively small amount, is a
worthwhile investment; (b) illustrate that many

commonly performed analyses are straightfor-
ward to implement; and (c) show that important
methods not available elsewhere can be imple-
mented in R (easily in many cases). In addition to
these goals, we will show that an often unrealized
benefit of R is that it helps to create “reproducible
research,” in the sense that a record will exist of
the exact analyses performed (e.g., algorithm
used, options specified, subsample selected, etc.)
so that the results of analyses can be recovered at
a later date by the original researcher or by others
if necessary (and thus “How was this result
obtained?” is never an issue).

Currently, R is maintained by the R Core
Development Team. R consists of a base system
with optional add-on packages for a wide variety
of techniques that are contributed by users from
around the world (currently, there are more than
1,100 packages available on the Comprehensive
R Archival Network, http://cran.r-project.org/).
An R package is a collection of functions and
corresponding documentation that work seam-
lessly with R.R has been called the lingua franca
of statistics by the editor of the Journal of
Statistical Software (de Leeuw, 2005, p. 2).?

One of R’s most significant advantages over
other statistical software is its philosophy. In R,
statistical analyses are normally done as a series of
steps, with intermediate results being stored in
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objects, where the objects are later “interrogated”
for the information of interest (R Development
Core Team, 2007b). This is in contrast to other
widely used programs (e.g., SAS and SPSS),
which print a large amount of output to the
screen. Storing the results in objects so that infor-
mation can be retrieved at later times allows for
easily using the results of one analysis as input for
another analysis. Furthermore, because the
objects contain all pertinent model information,
model modification can be easily performed by
manipulation of the objects, a valuable benefit in
many cases. R packages for new innovations in
statistical computing also tend to become avail-
able more quickly than do such developments in
other statistical software packages.

As Wilcox (Chapter 18, this volume) notes, a
practical problem with modern methods is their
implementation. Without accessible tools (i.e., soft-
ware) to implement new methods, the odds of them
being implemented is slim. Because R is cutting
edge, many modern methods are available in R.

The need for implementing methods has led
to much interest in R over the past few years in
the behavioral, educational, and social sciences
(BESS), and this trend will likely continue. For
example, Doran and Lockwood (2006) provide a
tutorial on using R to fit value-added longitudi-
nal models for behavioral and educational data
using the nonlinear mixed effects (nlme) package
(Pinheiro, Bates, DebRoy, & Sarkar, 2007). There
is also a special issue in the Journal of Statistical
Software, with 10 articles on psychometrics in R,
and statistical texts used in the applied BESS are
beginning to incorporate R (e.g., Fox, 2002;
Everitt, 2005). Further evidence comes from
Wilcox (Chapter 18, this volume), who provides
R functions that implement the methods he has
developed for robust methods in R (and S-Plus,
arelated program).® Methods for the Behavioral,
Educational, and Social Sciences (MBESS;
Kelley, 2007a, 2007b, in press) is an R package
that implements methods that are especially
helpful for the idiosyncratic needs of the BESS
researchers. For example, a set of functions
within MBESS is for confidence interval forma-
tion for noncentral parameters from t, F, and
chi-square distributions, which lead to functions
for confidence interval formation for various
effect sizes that require noncentral distributions
(as discussed in Thompson, Chapter 17, this vol-
ume). In addition to confidence interval formation,

MBESS contains functions for sample size plan-
ning from the power-analytic and accuracy in
parameter estimation approaches for a variety of
effects commonly of interest in the BESS.
Perhaps R’s biggest hindrance is also its
biggest asset, and that is its general and flexible
approach to statistical inference. With R, if you
know what you want, you can almost always get
it.. . but you have to ask for it. Using R requires
amore thoughtful approach to data analysis than
does using some other programs, but that dates
back to the idea of the S language being one
where the user interacts with the data, as
opposed to a “shotgun” approach, where the
computer program provides everything thought
to be relevant to the particular problem (Becker,
1994, p. 1). For those who want to stay on the
cutting edge of statistical developments, using R
is a must. This chapter begins with arithmetic
operations and illustration of simple functions.
Commonly used methods (e.g., multiple regres-
sion, ¢ tests, analysis of variance, longitudinal
methods) and advanced techniques within these
methods (e.g., confidence intervals for standard-
ized effect sizes, visualization techniques, sample
size planning) are then illustrated. We hope this
chapter will convey that using R is indeed a best
practice and can be a valuable tool in research.

Basic R CoMMANDS

As mentioned, R is an object-oriented language
and environment where objects, whether they be
a single number, data set, or model output, are
stored within an R session/workspace. These
objects can then be used within functions, used
to create other objects, or removed as appropri-
ate. In fact, a function itself is an object. The
expression <— is the assignment operator (assign
what is on the right to the object on the left), as
is —> (assign what is on the left to the object on
the right). Expressions are entered directly into
an R session at the prompt, which is generally
denoted >. In this chapter, we use R> as the
prompt to emphasize that the R code that fol-
lows is directly executable.

Suppose a data set, my.data, exists within an R
session (we discuss loading data files in the next
section). Typing my.data and then pressing
enter/return will display the values contained in
the my.data data set:



R> my.data

R> X y
1 1 2
2 3 4
3 3 8
4 4 9
5 5 10

As can be seen, my.data is a 5-by-2 matrix with the
first column labeled X and the second labeled y.
The square brackets, “[ ],” can be used to
extract information from a data set (or matrix),
by specifying the specific values to extract. For

example, consider the following commands:

R> x <— my.datal[,1]
R> y <— ma.datal,2]
R>x

[1113345

R>y

[11248910

The first command extracts the first column
of my.data, the vector X, and the second com-
mand extracts the second column, the vector y.
Notice the comma that separates rows and
columns. Since no rows were specified, all were
selected. We can obtain various pieces of infor-
mation from the objects by using functions. For
example, applying the following functions
returns the sum, length, mean, and the variance
of the vector X, respectively:

R> sum(x) #the summation of x

[1] 16

R> length(x) #the number of components of x
[1]15

R> mean(x) #the mean of x

[1] 3.2

R> var(x) #the variance of x

[1]R2.2

Notice the use of the number sign (#) for com-
ments; anything that follows a number sign on a
line is ignored. R uses vectorized arithmetic,
which implies that most equations are imple-
mented in R as they are written, both for scalar
and matrix algebra (in general). Many computing
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languages have their own idiosyncratic language
for scalar and especially matrix algebra.

To obtain the summary statistics for a
matrix instead of a vector, functions can be
used in a similar fashion. Using the data set
my.data, consider the following commands,
which are analogous to the commands applied
to the vector:

R> sum(my.data)

[1] 49
R> length(my.data)
[1]1R
R> mean(my.data)
y
32 6.6
R> var(my.data)
X y
X R.2 4.6
y 4.6 11.8

In fact, the same functions were used, but R is
intelligent enough to apply them differently
depending on the type of data specified (e.g., a
vector, matrix, data frame, etc.). Notice that the
use of length() with X returned 5, the number
of elements in the vector, whereas the use
of length() with my.data returned 2, indicat-
ing there are two variables (i.e., columns), X
and ¥y, in the matrix. To obtain the dimensions
of matrix or data frame, the dim() function can
be used.

R> dim(my.data)
1162

Thus, my.data is a 5 (number of rows) by 2
(number of columns) matrix.

Help files for R functions are available with
the help() function. For example, if one were
interested in the additional arguments that can
be used in the mean, help(lnean) could be used.
Sometimes one might be interested in a function
but not know the name of the function. One
possibility is to use the search function, where
the term(s) to search are given as a text string in
quotes. For example, suppose one were inter-
ested in a function to obtain the median but
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unsure of the function name. The help.search()
function could be used as

R> help.search(“median”)

which returns information on functions that
have “median” in their documentation. Another
resource is the R Web site, where search facilities
allow for searching across help files and mailing
list archives: http://r-project.org.

LoaDpING DataA

R can be used in conjunction with other com-
monly used statistical (and mathematical) pro-
grams, such as Excel, SPSS, and SAS.

Files in the Format of .txt and .dat

The function to load a data set in the form of
.txt or .dat file is read.table(). This function has
arich array of arguments, but the most common
specification is of the form

read.table(file, header=FALSE, sep=* ")

where file is the argument that identifies the file
to be loaded into R, header is a logical argument
of whether the file’s first line contains the names
of the variables, and sep denotes the character
used to separate the fields (e.g.,“*”,“,”, “&”, etc.).

For example, consider the following command:

R> datal <— read.table(file=“datal.dat”,
header=TRUE, sep="").

This command loads the data file “datal.dat”
from the current working directory into R (since
a specific file location is not specified) and stores
the data into the R object datal. R’s working
directory is the folder where R reads and stores
files; the default position is where R is installed.
If the data file to be loaded is not in the current
directory, the user also needs to define the file’s
position, such as

R> data® <— read.table(file="c:/My
Documents/dataR.txt”, header=FALSE, sep=",").

Notice in the first example that the sep
argument used a space, whereas a comma was

used in the second. This is the case because
datal.dat and datal.txt have fields separated
with spaces and commas, respectively. Further-
more, R requires the use of “/” or “\\” to signal
directory changes, whereas the notation com-
monly used for folder separation in Microsoft
Windows (i.e., “\”) is not appropriate in R; this
is the case because R has its origins in Unix,
which uses the forward slash. Note that the
extension name (e.g., .dat, .txt, .R, etc.) of the
file should always be specified. Using setwd(),
one can set the current working directory to a
desired folder, so that one does not need to
specify the file’s position in the future. To load
“data2.txt” in the previous example, instead of
defining the file’s position, one can use the fol-
lowing commands.

R> setwd(“C:/My Documents”)
R> datal <— read.table(file="datal.txt”,
header=FALSE, sep="")

It is important to note if the working direc-
tory is modified, R, however, sets the default
working directory back to where the program is
installed whenever R is closed. Because most
mainstream statistical and mathematical pro-
grams are able to convert data files of their own
format into either .dat or .txt format ASCII files,
such a conversion and use of the procedures
described is always one approach to load data
files into R.

Loading Excel Files

We will use the data set in file salary.xls to
illustrate the methods in this section. This data
set, which contains the salaries and other infor-
mation of 62 professors, comes from Cohen,
Cohen, West, and Aiken (2003, pp. 81-82). In
future sections, we will also use this data set to
illustrate graphical techniques and regression
analysis in R. To import Excel files into R
requires the RODBC (Lapsley & Ripley, 2007)
package. RODBC stands for R Open DataBase
Connectivity; ODBC is a standard database
access method for connecting database applica-
tions. By default, this package is not loaded into
an R session. To see which packages are cur-
rently loaded, the search() function is used,
which shows the basic packages that are loaded
by default when R is opened:
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R> search()

[1] “GlobalEnv”
[4] “package:grDevices”
(7] “package:methods”

“package:stats” “package:graphics”
“package:utils”

“Autoloads”

“package:datasets”
“package:base”

When using R in Microsoft Windows, loading a
package can be done by selecting the “Packages”
tab on the tool bar and then selecting “Load
package.” A window opens that lists the packages
that are installed on the system, which can be
selected and loaded. If RODBC is not on the
list, it will need to be installed. In Microsoft
Windows, select the “Packages” tab on the tool-
bar and then “Install package(s),” select a
server/mirror (generally the closest location),
and then choose RODBC. An alternative way
to load installed packages is with the library()
function, which is illustrated with the RODBC
package:

R> library(RODBC) .

Note that running the library() function with-
out any arguments in the parentheses lists all
available packages.

After RODBC is loaded, use odbcConnect
Excel() to open an ODBC connection to the
Excel database:

R>connect <— odbcConnectExcel
(“salary.xls”).

Then function sqlTables() lists the sheets in the
Excel file:

R> sqlTables(connect)
TABLE_CAT TABLE_SCHEM TABLE_ NAME
TABLE_TYPE
1 G:\\Program Files\\R\\R—2.4.1\\salary
<NA> salary$ SYSTEM TABLE

Notice that the first sheet, whose name is
“salary” (in the column TABLE_NAME), is the
sheet that contains the data of interest.
Therefore, we use sqlFetch() to obtain the data
of interest as follows:

R> prof.salary <— sqlFetch(connect, “salary™)

The data set is then loaded into R and stored in
the object called prof.salary.

Loading SPSS Files

The function read.spss(), which is in the
foreign package (R Development Core Team,
2007a), is used to load an SPSS file into R. For
example, after loading the foreign package, the
following command:

R> prof.salary? <— read.spss(file="salary
.sav”)

loads salary.sav into R and stores the data set in
the object prof.salary®. The file salary.sav con-
tains the same data set as the one in “salary.xls.”

Creating and Loading .R Files

After data are created in R, or data of other
formats are imported into R, many times it is
desirable to save the data in R format, denoted
with a .R file extension, so that loading data can
be easily done in a future session. This can be
achieved by using the dump() function:

R> dump(“prof.salary”, file="prof.salary.R")

which creates a file called “prof.salaryR” that
contains the object prof.salary in the current
working directory. Alternatively, as before when
the data were loaded into R, a particular file
location can be specified where the data should
be “dumped” (i.e., exported/stored).

Loading data from a .R data file can be done
in several ways, the easiest of which is to source
the data set into R with the source() command,
which runs a selected file. When a file consists of
a .R data set, that file is then loaded into R and
made available for use. For example, to load the
data in file “prof.salary.R,” consider the follow-
ing command:
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R> source(“prof.salaryR”)

GRAPHICAL PROCEDURES

We will use the professor salary data from
Cohen et al. (2003), prof.salary, to illustrate
some of R’s graphical functions.* After loading
the data, use names() to determine the names of
the variables.

R> names(prof.salary)
[1] “id” “time” “pub” “sex” “citation” “salary”

Here, (a) id represents the identification
number; (b) time refers to the time since getting
the Ph.D. degree, (c) pub refers to the number
of publications, (d) sex represents gender (1 for
female and 0 for male), (e) citation represents
the citation count, and (f) salary is the profes-
sor’s current salary. To reference a column of the
data set (e.g., pub), one needs to use the dollar
sign “$”:

R> prof.salary$pub
1832 1711638489223021 1027378
1361229297669 11

A more convenient way is to attach the data set
to R’s search path. Then the user can reference
pub in prof.salary simply with pub.

R> attach(prof.salary)

R> pub

18321711638489223021 1027378
1361229297669 11

An attached data set is one where the column
names have been “attached,” which implies the
columns can be directly called upon. At any
time, only one data set can be attached. To attach
a new data set, one must detach the data set that
is currently attached to R. R automatically
detaches the data set whenever the user exits the
program:

R> detach(prof.salary)
R> attach(newdata).

Scatterplot

The function plot() can be used to plot data.
Although it has a diverse array of arguments, the
most common specifications is of the form

plot(x, y, type, col, xlim, ylim, xlab, ylab, main),

where X is the data to be represented on the
abscissa (x-axis) of the plot; ¥ is the data to be
represented on the ordinate (y-axis; note that
the ordering of the values in X and y must be
consistent, meaning that the first element in y is
linked to the first element in X, etc.); type is the
type of plot (e.g., p for points, 1 for lines, n for no
plotting but setting up the structure of the plot
so that points and/or lines are added later); col is
the color of the points and lines; xlim and ylim
are the ranges of x-axis and y-axis, respectively;
xlab and ylab are the labels of x-axis and y-axis,
respectively; and main is the title of the plot. All
of the above arguments, except X and ¥, are
optional, as R automatically chooses the appro-
priate settings (usually). For example, to plot the
relationship between salary and pub (without
the regression line), the following can be used:

R> plot(x=pub, y=salary, xlim=c(0, 80),
xlab="Number of Publications”,
ylab="Professor’s Salary”)

Note in the application of the plot() function
that the range of the x-axis is defined by ¢(),
which is a function to generate vectors by com-
bining the terms (usually numbers). A regres-
sion line or a smoothed regression line can be
added to the scatterplot if desired. The smoothed
regression line fits a regression model to a set of
points in a certain “neighborhood,” or locally.
Such a technique is called lowess (or loess; see
Cleveland, 1979, 1981, for a detailed discussion
of smoothed locally weighted regression lines).
Adding such a smoothed regression line to a plot
can be done as follows using the lines() function
combined with the lowess() function:

R> lines(lowess(x=pub, y=salary, f=.8)).

The lines() function is used to draw lines or line
segments, whose basic specification is of the form
lines(x, y), where the arguments are the same as
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Figure 34.1 Scatterplot for professor’s salary as a function of the number of publications.

those in plot(). The lowess() function has f as a
smoothing span that defines the width of the
neighborhood in which points are treated locally,
with a larger f representing a larger “neighbor-
hood,” which then gives more smoothness.

The function locator() helps to determine
which point in a plot corresponds with which
individual in the data. It can be used, for
example, to identify outliers and miscoded data.
After a scatterplot has been plotted,

R> locator()

turns the mouse pointer into a cross for point
identification by selecting a specific point.

Matrix Plot

The function pairs(), whose arguments are all
the same as those of plot(), can be used to pro-
duce scatterplot matrices. For example,

R> pairs(prof.salary[-1])

plots all the variables except the first one (i.e.,1d)
in prof.salary. When the user is interested in
only a few variables in a data set, one possibility
is to create a new object with only those vari-
ables. For example, suppose one is interested in
only pub, citation, and salary and does not want
all five variables in the matrix plot.

R> pub.cit.sal <— data.frame(pub, citation,
salary)
R> pairs(pub.cit.sal)

Histogram

The function to plot histograms is hist(). The
basic specification is of the form

hist(x, breaks, freq)

where X is the data to be plotted, breaks defines
the way to determine the location and/or quan-
tity of bins, and freq is a logical statement of
whether the histogram represents frequencies
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the number of publications.

(freq=TRUE) or probability densities (freq=
FALSE). For example, to plot histograms of pub,
consider the following commands:

R> par(mfrow=c(R,2))

R> hist(pub, main="1st")

R> hist(pub, freq=FALSE, main="2nd")

R> hist(pub, freq=FALSE, breaks=10,
main= “3rd”)

R> hist(pub, freq=FALSE, breaks=seq
(from=0, t0=75, by=6), main="4th")

R> lines(density(pub, bw=3))

same page. If mfrow is defined as mfrow=c(m,n),
then figures will be arranged into an m-row-by-n-
column array.

If breaks in hist() is defined by a single
number, then the number is considered by R as
the number of bins. In order to define the range
of a single bin, the user needs to use a vector giv-
ing the breakpoints between the cells. The func-
tion to generate such vectors is seq(), whose
basic specification is of the form

seq(from, to, by)

The function par() is used to modify graphical
parameters, and it has a rich array of arguments to
control line styles, colors, figure arrangement, titles
and legends, and much more. With the function
par(), the user can customize nearly every aspect of
the graphical display. Moreover, all of the argu-
ments in par() can be included in, and thus con-
trol, other graphical functions, such as hist() and
lines(); put another way, a uniform set of parame-
ters controls all graphical functions and all aspects
of figure presentation. The argument mfrow in
par(Q) is used to arrange multiple figures on the

where from and to are the starting and end val-
ues of the sequence, respectively, and by is the
increment of the sequence. Thus, the fourth
histogram bins the data every 6 units. When
included as an argument in lines(), the function
density() can be used to add a smoothed density
line to the histogram. In density(), bw is the
smoothing bandwidth to be used, analogous to
the span in lowess()—the larger the bw, the
smoother the density line. Only when the verti-
cal axis represents the probability can the prob-
ability density curve be drawn on the histogram.
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Scatterplot matrix for the time since getting the Ph.D. degree, the number of publications,

gender, the number of citations, and the current salary.

QQ Plot

The graphical functions to visually inspect
for normality are qqnorm(), qgplot(), and
qqlineQ). The function ggnorm() plots the sample
quantiles against the theoretical quantiles from a
normal distribution. The function qgline() adds
a line to the current QQ plot, indicating where
the observed values are expected given a normal
distribution. The function qgplot() is used to
examine the relationship between two variables.
Their basic specifications are

qqnorm(y)
qqline(y)
qaplot(x, y)

where X and y are data to be represented on the
x-axis and y-axis, respectively. Suppose we want
to examine the normality of pub and the rela-
tionship between pub and salary. Because stan-
dardized scores are generally preferred in QQ
plots, we first standardize pub and salary. The
function mean() calculates the mean of a set of
data and sd() the standard deviation.

R> std.pub <— (pub — mean(pub)) / sd(pub)

R> std.salary <— (salary - mean(salary)) /
sd(salary)

R> qqnorm(std.pub)

R> qqline(std.pub)

R> qqplot(std.pub, std.salary,
xlab="“Standardized Publications”,
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ylab="Standardized Salary”)

Another way to standardize, which is much
simpler, is to use scale(), whose common speci-
fication is of the form

scale(x)

where X is the data to be standardized. Therefore,
instead of usingmean() and sd(), the following com-
mands produce the same QQ plot as Figure 34.5.

R> scale.pub <— scale(pub)
R> qgnorm(scale.pub)
R> qqline(scale.pub)

MurrirLE REGRESSION

In this section, we will continue to use the pro-
fessor salary data set from Cohen et al. (2003),
prof.salary, to illustrate how to conduct multiple
regression analysis with R.

Fitting Regression Models

R uses ~, +, and —, along with a response
variable(s) and K predictor variables, to define a

Histograms with different specifications for the number of publications.

particular model’s equation. The generic for-
mula is of the form

response variable ~ predictor, + (or —)
predictor, . . . + (or —) predictor,

where + signals inclusion of the predictor, and —
signals exclusions of the predictor. The minus
sign may seem meaningless when defining a new
formula, but it is useful in removing predictors
from a currently existing model in the context of
model modifications.

The function for fitting a linear model is the
linear model function, Im(), whose basic specifi-
cation is in the form of

Im(formula, data)

where formula is a symbolic description of the
model to be fitted (just discussed), and data
identifies the particular data set of interest.
For example, to study the regression of profes-
sors’ salaries (Y) conditional on publications
(X,) and citations (X,), we use the following
syntax to fit the model and obtain the model
summary:
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QQ plot for standardized professor’s current salary and standardized number of publications.
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R> modell <— lm(salary ~ pub + citation, data=prof.salary)

R> summary(modell)

ﬁilformula:salary ~ pub + citation, data=prof.salary)
Residuals:
Min 1Q Median 3Q Max
-17133.1 -6218.3 -341.3 5324.1 17670.3
Coefficients:

Estimate Std. Error t value Pr(>t)
(Intercept) 40492.97 2505.39 16.162 < 2e-16 ***
pub 251.75 73.92 3.452 0.001034 **
citation 242.30 59.47 4.074 0.000140 ***

Signif. codes: 0’***' 0.001'**’ 0.01’*’ 0.05’) 0.1’ ‘ 1
Residual standard error: 7519 on 59 degrees of freedom
Multiple R-Squared: 0.4195, Adjusted R-squared: 0.3998
F-statistic: 1.32 on 2 and 59 DF, p-value: 1.076e-07

The fitted regression model is thus

Y= 40493 +251.8X, + 242.3X,, (1)

with the model’s squared multiple correlation
coefficient being 0.4195. In later sections, we
will discuss forming confidence intervals for
the population regression coefficients and for
the population squared multiple correlation
coefficient.

After fitting the model, the residuals can be
plotted for visual inspection of the quality of fit:

R> par(mfcol=c(R,2))
R> plot(modell)

The anova() function can be used to obtain a
table of the sums of squares (i.e., an ANOVA
table) for the fitted model:

R> anova(modell)
Analysis of Variance Table
Response: salary

Df Sum Sq Mean Sq F value Pr(>F)
pub 1 1472195326 1472195326 26.038 3.743e-06 ***
citation 1 938602110 938602110 16.601 0.0001396 ***
Residuals 59 3335822387 56539362

Signif. codes: 0'***’ 0.001'*** 0.01'*’ 0.05") 0.1 * 1

The object modell contains rich informa-
tion about the fitted regression model. To see

the available objects, the function names() can
be used:
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R> names(modell)

[1] “coefficients” “residuals” “effects” “rank”
[B] “fitted.values” “assign” “qe” “df.residual”
[9] “xlevels” “call” “terms” “model”

For example, suppose one wants to check
whether there is systematic relationship
between the residuals and the predictors. The
following commands should be considered
(recall how we extracted pub from prof.salary
with the sign“$”):

R> par(mfrow=c(R,2))
R> plot(pub, modell$residuals,
main="Residuals vs Predictor 1”)
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R> plot(citation, modell$residuals,
main="Residuals vs Predictor ")

Model Comparison

The function update() is a convenient func-
tion for situations where the user needs to fit a
model that only differs from a previously fitted
model in a nested form. Its basic form is
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Figure 34.7

Scatterplot for residuals as a function of fitted values with a smoothed regression line (top

left), scatterplot for standardized residuals as a function of fitted values (top right), QQ plot
for standardized residuals (bottom left), and scatterplot for standardized residuals as a
function of leverage (bottom right), all of which are produced by plotting the fitted linear

regression model object.
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residuals as a function of the number of citations (on the right).

update(object, formula)

denotes the corresponding part of the old model
formula.

where object is the originally fitted model, and
formula is the new model to be calculated. Also,
in defining the new formula, the period (i.e., “”)

For example, suppose there was interest in
adding the predictor time (X,) and sex (X,) to
the previous model:

R> model2 <— update(modell, . ~ . + time + sex)

R> summary(model?)

Im(formula=salary ~ pub + citation + time + sex, data=prof.salary)

Call:
Residuals:
Min 1Q
-13376.8 -4482.5
Coefficients:

Estimate
(Intercept) 39587.35
pub 92.75
citation R01.93
time 857.01
sex 917.77

Median 3Q Max
-989.7 4316.2 20671.2
Std. Error t value Pre(>[t))
_717.48 14.568 <2e-16 ***
85.93 1.079 0.28498
87.51 3.511 0.00088 ***
28'7.95 2.976 0.00428 **
1859.94 -0.493 0.62360

Signif. codes: 0’***' 0.001’**’ 0.01’** 0.057 0.1’ 1
Residual standard error: 7077 on 57 degrees of freedom
Multiple R-Squared: 0.5032, Adjusted R-squared: 0.4684
F-statistic: 14.44 on 4 and 57 DF, p-value: 3.357¢-08




Given the specifications above, the new model
obtained is

Y =39587.35 + 92.75X, + 201.93X, + ,
857.01X, — 917.77X,, (2)

with the squared multiple correlation coefficient
increasing from 0.4195 in the previous model to
0.5032 in the present model.
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To compare the full model (i.e., the one with
four predictors) with the reduced one (i.e., the
one with two predictors), anova() can be used,
which evaluates if the sum of squares accounted
for by the additional two predictors in the full
model leads to a significant decrease in the
proportion of variance in Y that was previously
unaccounted for in the reduced model. Interested
readers may refer to Cohen et al. (2003) or
Maxwell and Delaney (2004) for a discussion of
model comparisons:

R> anova(modell, model?)

Analysis of Variance Table

Model 1: salary ~ pub + citation

Model 2: salary ~ pub + citation + time + sex

Res.Df RSS
59 333582387
2 57 2854659884

Signif. codes: 0’***’ 0.001'**’ 0.01'*’ 0.05") 0.1 * 1

Df Sum of Sq F Pr(GF)

P 481162503 48038  0.01180 *

Notice that with the additional two variables,
a significant reduction (p < .05) in the unac-
counted for variance was achieved.

Interaction Plots

A general expression for a regression equa-
tion containing a two-way interaction is

};z Bo + BIX+ BzZ+ B3X Z, (3)

where f, is the intercept; B, and P, are the
regression coefficients of the main effects of X
and Z, respectively; and [, is the regression
coefficient for the interaction between X and Z.
Many theories in the social sciences hypothe-
size that variables interact (there are modera-
tors), and thus the idea of testing interactions is
fundamental in many areas of the BESS (Cohen
et al., 2003; Aiken & West, 1991). The MBESS R
package contains functions to plot two- and
three-dimensional interaction plots.

The function intrplot() in MBESS plots a
three-dimensional representation of a multiple
regression surface containing one two-way
interaction. The most common specification of
this function is in the form

intr.plot(b.0, b.x, b.z, b.xz, Xx.min, X.max,
z.min, z.max, hor.angle, vert.angle)

where b.0, b.x, b.z, b.Xz are the estimates of 3,
B, B, B, in Equation 3, respectively; x.min,
X.max, z.min, and z.max define the minimum
and maximum values of X and Z of interest,
respectively; hor.angle is the horizontal view-
ing angle; and vert.angle is the vertical view-
ing angle.

Cohen et al. (2003, pp. 257-263) provide an
example for a regression containing one two-
way interaction, whose model equation is

Y=2+02X+06Z+04XZ, (4)
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with X being [0, 2, 4, 6, 8, 10] and Z being [0, 2, 4, 6, 8, 10]. To replicate this example, intr.plot() can
be defined as follows:

R> par(mfrow=c(2,2))
R> intrplot(b.0=R, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10)

R> intrplot(bh.0=R, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10, hor.angle=-65,
vert.angle=15)

R> intr.plot(b.0=R, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10, hor.angle==65,
vert.angle=5)

R> intrplot(bh.0=8, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10, z.min=0, z.max=10, hor.angle=45)

The function m.t r.plqt..%d() in MBESS ‘s intrplot.2d(b.0, b.x, b.z, b.xz, x.min, x.max,
used to plot regression lines for one two-way
. . . . . mean.z, sd.z)
interaction, holding one of the predictors (in
this function, Z) at values -2, -1, 0, 1, and 2 where b.0, b.x, b.z, b.xz, x.min, x.max have the
standard deviations above the mean. The most  game meaning as those in intr.plot(), and mean.z
common specification of intr.plot.2d() is of

and sd.z are the mean and standard deviation of
the form Z, respectively.
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Figure 34.9

Regression surface for Y=2+02X+06Z +04XZ displayed from —45° horizontal angle and
15° vertical angle (upper left), —65° horizontal angle and 15° vertical angle (upper right), —65°
horizontal angle and 5° vertical angle (lower left), and 45° horizontal angle and 15°

vertical angle (lower right). The three bold lines on the regression surface are regression lines
holding Z constant at —1, 0, and 1 standard deviations from Z’s mean.



Cohen et al. (2003, pp. 263-268) give an
example for the regression lines of

Y=16+22X+2.6Z+0.4XZ (5)

holding Z constant at values —1, 0, and 1 stan-
dard deviations above the mean, when X € [0,
50], the mean of Zis 0, and the standard devia-
tion of Zis 1. We can replicate and extend this
example by specifying intr.plot.2d() as follows.

R> intr.plot.2d(b.0=16, b.x=2.2, b.z=2.6,
b.xz=.4, x.min=0, x.max=50, mean.z=0, sd.z=1)

Confidence Intervals for
Regression Parameters

Forming confidence intervals for standard-
ized effect sizes is quite involved because such
intervals require the use of noncentral distribu-
tions (Kelley, 2007a; Smithson, 2003; Steiger,

120
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20
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2004; Steiger & Fouladi, 1997). Linking the con-
fidence intervals for a statistic of interest and
noncentral distributions is achieved with the
confidence interval transformation principle and
the inversion confidence interval principle, as dis-
cussed in Steiger and Fouladi (1997) and Steiger
(2004). Although methods to construct confi-
dence intervals for the population squared mul-
tiple correlation coefficient (e.g., Algina &
Olejnik, 2000; Smithson, 2003) and for the pop-
ulation standardized regression coefficients
(e.g., Kelley, 2007a; Kelley & Maxwell, 2003, in
press) have been developed, no mainstream
statistical packages besides R with MBESS can
perform such tasks without using special
programming scripts. Although such confidence
intervals are difficult to obtain, they are impor-
tant nonetheless. The benefits of confidence
intervals for standardized effect sizes are the
focus of Thompson (Chapter 18, this volume).
MBESS has a powerful set of functions that

30 40 50

Value of X

—— at Z’s mean

- -— 1sdabove z’'s mean
----- 1 sd below z’s mean —— 2 sd below z’s mean

2 sd above z's mean

Figure 34.10

Regression lines for f/: 16 +2.2X +2.6Z,+ 0.4XZ, holding Z, whose mean is 0 and standard

deviation is 1, constant at values -2, —1, 0, 1, and 2 standard deviations from the mean.
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implements confidence intervals for noncentral
t, F, and chi-square parameters. These functions
(conf.limits.net(), conflimts.nef(), and conflim-
its.nc.chi.square()) return the confidence inter-
val for noncentrality parameters, which are then
used in other MBESS functions to implement
confidence intervals for specific effect sizes that
are commonly used in the BESS.

Confidence Intervals for Omnibus Effects

The sample squared multiple correlation
coefficient, denoted R?, often termed the coeffi-
cient of multiple determination, is defined as

SSregression
SStotal

R = (6)

MBESS includes the function ¢i.RR() to form
the exact confidence intervals for the population
squared multiple correlation coefficient in the
context of fixed (e.g., Smithson, 2003; Steiger,
2004) or random regressors (Algina & Olejnik,
2000; Ding, 1996; Lee, 1971; Steiger & Fouladi,
1992). In almost all applications of multiple
regression in the behavioral, educational, and
social sciences, regressors are random. When the
predictors are random, a basic specification of
the function is of the form

ci.R2(R8, N, K, conf.level=.95)

where RR is the observed (i.e., sample) squared
multiple correlation coefficient, conf.level is the
desired confidence interval coverage, N is the
sample size, and K is the number of predictors.
In the case of fixed regressors, the statement

Random.Regressors=FALSE

should be included in the ¢i.R2 function.

For example, to form the 95% exact confi-
dence interval for P2, the population squared
multiple correlation coefficient, of modelg,
where the predictors are regarded as random,
¢1.RR() is specified as follows:

R> ci.RR(RR=0.503%, N=68, K=4)
$Lower.Conf.Limit.RQ
[110.8730107

$Prob.Less.Lower

[1] 0.025
$Upper.Conf Limit.R2
[1] 0.6420285
$Prob.Greater.Upper
[1]1 0.025

Recall that the observed squared multiple
correlation coefficient can be obtained from the
function summary(). Therefore, the 95% confi-
dence interval for the population squared multi-
ple correlation coefficient of model?, when the
predictors are considered random, is

Cl,.=[0.273 < P> < 0.642],

where CI ; represents a 95% confidence interval.
The function ¢i.R() is used to obtain the con-
fidence interval for the population multiple cor-
relation coefficient (i.e., P). The most common
specification of this function is of the form

ci.R(R, N, K, conf.level=.95)

where R is the observed multiple correlation
coefficient, and other arguments are the same as
those in ¢1.RR(). This function also by default
considers the predictors random; when the
predictors are fixed, the user can include
Random.Regressors=FALSE in the argument.
Because ¢i.R() and ¢i.RR() require only the
observed multiple correlation coefficient or its
square, respectively, and the degrees of free-
dom, these functions can also be used to form
confidence intervals for effects reported in
published articles or multiple regression mod-
els that were fitted in other programs that do
not have the capabilities available in R to
implement the confidence intervals.

Confidence Intervals for Targeted Effects

The function confint() is used to construct
confidence intervals for unstandardized regres-
sion coefficients from a fitted linear model. Its
basic specification is of the form

confint(object, parm, level=.95)

where object is the fitted linear model, parm is the
parameter whose confidence intervals are to be
formed, and level is the desired confidence level; if
parm is not specified, confidence intervals for all



regression coefficients will be computed. To obtain
a 90% confidence interval for pub in model?, the
function confint() is specified as follows:

R> confint(model?, “pub”, level=.90)
5% 95%
pub —50.92814 236.4208

Therefore, the 90% confidence interval for
the population unstandardized regression coef-
ficient of pub in modelR (i.e., B,) is CI ;= [-50.93 <
B, <236.42], where CI , represents a confidence
interval at the subscripted level.

However, confint() can only be used to form
confidence intervals for unstandardized regression
coefficients and always returns a two-tailed confi-
dence interval. Another function to obtain confi-
dence intervals for targeted regression coefficients
is el.re(), which is contained in the MBESS pack-
age. The basic specification ofci.re() is of the form

ci.re(bk, 8.Y,s.X, N, K, RR.Y X, RRk X.with-
out.k, conf.level=.95)

where bk is the value of the regression coeffi-
cient for the kth regressor of interest (i.e., X,),
8.Y is the standard deviation of the response
variable Y, 8.X is the standard deviation of X, N
is sample size, K is the total number of regres-
sors, RR.Y_X is the squared multiple correlation
coefficient predicting Y from all the predictors,
R2.k_X.without.k is the squared multiple corre-
lation coefficient predicting X, from the remain-
ing K- 1 predictors, and conf.level is the desired
confidence interval coverage.’ Unlike confint(),
which is based on R’s fitted linear model objects,
cire() requires only summary statistics, and
thus the output from other statistical programs
and published articles can be used as input.

For example, to obtain the 90% confidence
interval for the population regression coefficient
of pub in model®, consider the following steps:

R>model.pub <— update(model?, pub ~ .
- pub)

R> summary(model.pub)

Call:

Residuals:

Coefficients:
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Multiple R-Squared: 0.433, Adjusted
R-squared: 0.4037

R> ci.re(b.k=92.75, s.Y=sd(salary),
s.X=sd(pub), N=62, K=4, RR.Y_X=0.5032,
RR.k_X.without.k=0.433, conf.level=.90)

$Lower.Limit.for.beta.k

[1] -50.92821

$Prob.Less.Lower

[1]1 0.0

$Upper.Limit.for.beta.k

[1] 236.4282

$Prob.Greater.Upper

[1]0.05

Therefore, the 90% confidence interval for the
population unstandardized regression coefficient
of pub in modelR (i.e., B,), computed by ci.rc(), is

Cl,,= [-50.93 < B, < 236.42],

which is the same as what confint() returned pre-
viously. Moreover, with some additional argu-
ments (namely, alphalower and alpha .upper),
ei.re() is also able to form one-tailed confidence
intervals or other nonsymmetric confidence inter-
vals, which is not possible with confint(). Note that
RR.Y_X is obtained from model?’s summary table
(the model with all predictors), and RR.k_X with-
out.k is obtained from model.pub’s summary table
(the model without the predictor of interest).
The function ci.sre() in MBESS is used to
form confidence intervals for the population
standardized regression coefficient. A basic
specification of this function is of the form

ci.src(beta.k, SE.beta.k, N, K, conf.level=0.95)

where beta.k is the standardized regression coef-
ficient of the kth predictor (i.e., the one of inter-
est), SE.beta.k is the standard error of the kth
regression coefficient, and N, K, and conf.level
are the same as those in ci.re().

For example, suppose we want to obtain the
95% confidence interval for the population stan-
dardized regression coefficient of pub in modelR.
Because the data used in modelR are unstandard-
ized and betak in cisre() requires standardized
ones, we first need to standardize the fitted model’s
regression coefficients. When the user inputs stan-
dardized data to fit the linear model, the regression
coefficients returned are already standardized.
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R> std.pub <— scale(pub)

R> std.time <— scale(time)

R> std.citation <— scale(citation)
R> std.sex <— scale(sex)

R> std.model® <— Im(std.salary ~ std.pub + std.time + std.citation + std.sex)

R> summary(std.model?)

Call:
Residuals:
Coefficients:
Estimate
std.pub 1.338e-01

Std. Error

1.240e-01

t value Pr(>[t])

1.079 0.28498

R> ci.sre(beta.k=0.1338, SE.beta.k=0.124, N=6R, K=4)

$Lower.Limit.for.beta.k
[1]-0.1110479
$Prob.Less.Lower

[1] 0.0258
$Upper.Limit.for.beta.k
[1] 0.3774881
$Prob.Greater.Upper
[1] 0.025

Thus, the 95% confidence interval for the
population standardized regression coefficient
of pub in model® (i.e., B,) is CI, = [-0.111< 3, <
0.377].

Sample Size Planning in Multiple Regression

Sample Size Planning for the
Ommnibus Effect: Power Analysis

Cohen (1988) discussed methods of sample
size planning for the test of the null hypothesis
that P2= 0, where P?is the population squared
multiple correlation coefficient. Cohen provided
an extensive set of tables for sample size deter-
mination for a large but limited set of condi-
tions. Those methods, and related ones, have
been implemented in MBESS so that researchers
can plan sample size for a desired power for the
omnibus effect in multiple regression.

The function ss.power.R2() in MBESS can be
used to plan sample size so that the test of the
squared multiple correlation coefficient has suffi-
cient power. Its basic specification is of the form

ss.power.RR(Population.RR, alpha.level=0.05,
desired.power=0.85, K)

where Population.R® is the population
squared multiple correlation coefficient,
alpha.level is the Type I error rate, desired
.power is the desired power, and K is the
number of predictors.

For example, to obtain the necessary sample
size when the population multiple correlation
coefficient is believed to be .25, Type I error rate
is set to .05, the desired power is .85, and the
regression model includes four predictors,
ss.power.R2() would be specified as

R> ss.power.R2(Population.R2=.25,
alpha.level=0.05, desired.power=0.85, K=4)

$Necessary.Sample.Size

[1] 46

$Actual. Power

[1]10.8569869

$Noncentral.F.Parm

[1] 15.33333



$Effect.Size
[1] 0.3333333

Thus, the necessary sample size is 46.

Sample Size Planning for the Omnibus Effect:
Accuracy in Parameter Estimation (AIPE)

The sample size for multiple regression can
be planned in such manner that the confidence
interval for the population squared multiple
correlation coefficient is sufficiently narrow;
“sufficiently narrow” is something defined by
researchers depending on the particular situa-
tion, much like the desired level of power.
This approach to sample size planning is termed
accuracy in parameter estimation (AIPE; Kelley &
Maxwell, 2003; Kelley, Maxwell, & Rausch, 2003;
Kelley & Rausch, 2006) because the goal of such
an approach is to obtain an accurate parameter
estimates. Interested readers may refer to Kelley
and Maxwell (2003, in press) and Kelley (2007,
2007¢) for a discussion of AIPE for omnibus
effects in multiple regression.

The function ss.aipe.RR() in MBESS can be
used to determine necessary sample size for the
multiple correlation coefficient so that the
confidence interval for the population multiple
correlation coefficient is sufficiently narrow. Its
basic specification is of the form

ss.aipe.RR(Population.R®, conf.level=.95,
width, Random.Regressors, K, verify.ss=FALSE)

where width is the width of the confidence inter-
val, Random.Regressors is a logical statement of
whether the predictors are random (TRUE) or
fixed (FALSE), conf.level is the confidence interval
coverage, Population.R® and K are the same as
those arguments in ss.power.R2(), and verify.ss
is a logical statement of whether the user requires
the exact sample size (verify.ss=TRUE ), which
involves a somewhat time-consuming set of
intense calculations (specifically an a priori
Monte Carlo simulation), or a close approxima-
tion (verify.ss=FALSE).

For example, suppose the population squared
multiple correlation coefficient is believed to be .5,
the confidence level is set to .95, and the regression
model includes five random predictors. If one
wishes to obtain the exact necessary sample size so
that the expected full confidence interval width is
.25, ss.aipe.RR() would be specified as
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R> ss.aipe.R&(Population.R&=.5, width=.25,
K=5, conf.level=.95, verify.ss=TRUE)

$Required.Sample.Size

[1] 125

An additional specification in 8s.aipe.R2()
allows for a probabilistic component that the
confidence interval obtained in a study will be
sufficiently narrow with some desired degree of
probability (i.e., assurance), which is accom-
plished with the additional argument assurance.
For example, suppose one wishes to have 99%
assurance that the 95% confidence interval will
be no wider than .25 units. The ss.aipe.RR()
function would be specified as

R> ss.aipe.R2(Population.R2=.5, width=.25,
K=58, conf.level=.95, assurance=.99,
verify.ss=TRUE)

$Required.Sample.Size

[1] 145

Sample Size Planning for Targeted Effects:
Power for Regression Coefficients

Cohen (1988) and Maxwell (2000) develop
methods to plan the necessary sample size so that
the hypothesis test of a targeted regressor has
a sufficient degree of statistical power to reject
the null hypothesis that the regressor is zero in
the population. Those methods have been imple-
mented in MBESS with the ss.power.re() function,
which returns the necessary sample size from the
power approach for a targeted regression coeffi-
cient. Its basic specification is of the form

ss.power.rc(RhoR.Y_X, Rho2.Y_X.without.k,
K, desired.power=0.85, alpha.level=0.05)

where Rho2.Y_Xis the population squared multi-
ple correlation coefficient, Rhod.Y_X.without.k is
the population squared multiple correlation coef-
ficient predicting the response predictor variable
from the remaining K- 1 predictors, K is the total
number of predictors, desired.power is the desired
power level, and alpha.level is the Type I error
rate. Maxwell (2000) describes an example in
which the population squared multiple correla-
tion coefficient is .131 and reduces to .068 when
the predictor of interest is removed in a situation
where there are five regressors® This example can
be implemented with ss.power.rc() as follows:
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R> ss.power.rc(RhoR.Y_X=0.131,
Rho2.Y_X.without.k= 0.068, K=5,
alpha.level=.05, desired.power=.80)

$Necessary.Sample.Size

[1]111

$Actual.Power

[110.8025474

$Noncentral.t.Parm

[1]1R.836'755

$Effect.Size. NC.t

[1]10.2692529

Thus, in the situation described, necessary sam-
ple size in order to have a power of .80 is 111.

Sample Size Planning for Targeted Effects:
AIPE for a Regression Coefficient

Kelley and Maxwell (2003, in press) develop
methods for sample size planning for unstan-
dardized and standardized regression coeffi-
cients from the AIPE perspective. These methods
have been implemented in functions ss.aipe.rc()
and ss.aipe.sre() from within MBESS so that
the necessary sample size can be obtained. The
basic specification of the ss.aipe.re() function is
of the form

ss.aipe.rc(Rho2.Y_X, Rho? k_X.without.k,
K, b.k, width, sigma.Y, sigma.X k, conf.level=.95)

where Rho2.Y_X is the population squared mul-
tiple correlation coefficient, K is the number of
predictors, bk is the regression coefficient for
the kth predictor variable (i.e., the predictor of
interest), Rho2.k_X.without.k is the population
squared multiple correlation coefficient predict-
ing the kth predictor from the remaining K — 1
predictors, sigma.Y is the population standard
deviation of the response variable, sigma.X.k is
the population standard deviation of the kth
predictor variable, and width and conf.level are
the same as those in ss.aipe.R2() function. From
the example for the power of an individual
regression coefficient, suppose that the standard
deviation of the dependent variable is 25 and the
standard deviation of the predictor of interest
is 100. The regression coefficient of interest
in such a situation is 1.18. Supposing a desired
confidence interval width of .10, necessary sam-
ple size can be planned as follows:

R> ss.aipe.re(Rho2.Y_X=0.131,
Rho?.k_X.without.k=0.068,

K=5, b.k=1.18, width=.10,
which.width="Full”, sigma.Y=25,

sigma.X.k=100)

[1199

Thus, necessary sample size in the situation
described is 99.

The function ss.aipe.sre¢() in MBESS can be
used to determine the necessary sample size for
the AIPE approach for a standardized regression
coefficient of interest. The most common speci-
fication of this function is of the same form as
given in ss.aipe.sre(), except the standardized
regression coefficient is specified. Supposing the
desired width is .30 for the standardized regres-
sion coefficient of .294, necessary sample size
can be planned as follows:

R> ss.aipe.src(RhoR.Y_X=0.131,
Rho2.k_X.without.k=0.068,

K=5, beta.k=.294, width=.30,
which.width="Full”)

[1]1173

where beta.k is used instead of bk to emphasize that
the regression coefficient is standardized. Thus, the
necessary sample size in such situation is 173.

STUDENT’s T TEST IN R

Student’s ¢ test is used for testing hypotheses
about means when the population variance
is unknown. There are three types of t tests:
(a) one-sample ¢ test, which compares the sam-
ple mean to a specified population mean;
(b) paired-samples ¢ test, which compares the
means of two paired samples; and (c) the two-
group t test, which compares the means of two
independent samples. We can use the function
t.test() to do all three types of t tests.

One-Sample ¢ Test

When a one-sample ¢ test is desired, the basic
specification of t.test() is of the form

t.test(x, mu, conf.level=.95)

where X is the particular data of interest, mu is
the specified population value of the mean, and
conf.level is desired confidence interval coverage.

To illustrate the one-sample ¢ test, we employ
the data reported in Hand, Daly, Lunn,



McConway, and Ostrowski (1994) on the esti-
mation of room length. Shortly after metric
units were officially introduced in Australia, a
group of 44 students was asked to estimate in
meters the width of the lecture hall in which
they were sitting. The true width of the hall was
13.1 meters. To test the hypothesis that students’
estimation of the width of the hall in metric
units was equal to the true value, the following
code is used to load the data and then to test the
hypothesis:

R> meter <— ¢(8,9,10,10,10,10,10,10,11,11,
11,11,182,1%,183,13,13,14,14,14,15,15,15,15,185,
15,15,15,16,16,16,17,17,17,17,18,18,20,22,25,
217,35,38,40)

R> t.test(meter, mu=13.1)

One Sample t-test

data: meter

t =2.7135, df = 43, p-value = 0.009539

alternative hypothesis: true mean is not
equal to 13.1

95 percent confidence interval:

13.85056 18.19490

sample estimates:

mean of X

16.02373

The summary table shows that the ¢ statistic,
with 43 degrees of freedom, is 2.714 with a cor-
responding (two-sided) p value less than .01.
The 95% confidence interval for the population
mean is

Cl, = [13.851 < p < 18.195],

where p is the population mean. Thus, the
students’ estimate of the room length in meters
differed significantly from its actual value. Both
p value and confidence interval reveal that it is
unlikely to observe data such as those in this
study if the students were able to make a correct
guess in meters.®

Paired-Sample ¢ Test

When a paired-sample ¢ test is desired,
t.test() is specified as

t.test(x, y, mu, paired=TRUE, conf.level=.95)

where X and y are the paired groups of data
of interest, paired=TRUE signals that the proce-
dure for the paired t test is to be used, and other
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arguments are the same as those in the one-
sample ¢ test context.

We will demonstrate a paired-samples ¢ test
using the data from Cushny and Peebles (1905),
which was used by Gosset (“Student”) to demon-
strate the theoretical developments of the ¢ distri-
bution (Student, 1908). The data are the average
number of hours of sleep gained by 10 patients on
two different drugs, Dextro-hyoscyamine hydro-
bromide and Laevo-hyoscyamine hydrobromide.
Gosset used the paired-sample ¢ test to test
the hypothesis that the average sleep gain by two
different drugs was the same. We define two
vectors, Dextro and Laevo with the scores from
Dextro-hyoscyamine hydrobromide and Laevo-
hyoscyamine hydrobromide, respectively, and
then implement a paired-samples  test:

R> Dextro <—¢(.7,-1.6,—-.2,-1.2,-.1, 3.4,
3.7,.8,0,8)

R> Laevo <—¢(1.9,.8,1.1,.1,-.1,4.4,5.5,
1.6,4.6,3.4)

R> t.test(Dextro, Laevo, paired=TRUE)

Paired t-test

data: Dextro and Laevo

t =—-4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in
means is not equal to 0

95 percent confidence interval:

—2.4598858 —0.7001142

sample estimates:

mean of the differences

-1.58

Thus, the observed ¢ statistic, with 9 degrees of
freedom, is —4.0621 with a corresponding (two-
sided) p value of .0028. The mean of the differ-
ences is —1.58 in the sample, and the 95%
confidence interval for the population mean dif-
ference is

Cl,,= [-2.460 < p,) — p, <—0.700],

where i, and p, are the population mean of the
hours of sleep for Dextro and Laevo, respectively.

Another way to conduct a paired-sample ¢
test is to calculate the difference between each
pair first and then conduct a one-sample ¢ test
on the differences. Therefore, an equivalent way
to test the hypothesis that the two drugs have
equivalent effects on drugs is to calculate the dif-
ferences and use the t.test() function in the same
manner as was done previously in the one-sam-
ple context:
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R> D <— Dextro—Laevo

R> t.test(D, mu=0)

One Sample t-test

data: D

t =-4.0621, df = 9, p—value = 0.002833

alternative hypothesis: true mean is not
equal to O

95 percent confidence interval:

—2.4598858 —0.7001142

sample estimates:

mean of x

-1.58

Notice that the results of the analyses are the same’

Two Independent Group ¢ Test

To perform a two independent group t test,
the most common specification of t.test() is of
the form

t.test(y ~ x, var.equal=TRUE)

where x and y are the particular groups of data
of interest, and var.equal is a logical statement of
whether the variances of the two groups of data
are assumed equal in the population. By default,
R assumes that the variances are unequal and
uses a degrees-of-freedom correction based on
the degree of observed heterogeneity of vari-
ance. Because most other statistical programs
assume homogeneity of variance, in that they
use the standard two-group ¢ test, we have spec-
ified var.equal=TRUE in our example for com-
parison purposes.

We use the data reported from Thompson
(Chapter 17, this volume), denoted LibQUAL#+"™,
which is a random sample of perceived quality
of academic library services from a larger data
set (see also Thompson, Cook, & Kyrillidou,
2005, 2006). The data have been added as a data
set in the MBESS package and can be loaded
with the following data function:

R> data(LibQUAL).

The grouping variables are (a) Role (under-
graduate student, graduate student, and faculty)
and (b) Sex. The outcome variables are (a)
LIBQ_tot, (b) ServAffe, (c) InfoCont, (d) LibPlace,
(e) Outcome, and (f) Satisfac. Thompson
(Chapter 17, this volume) uses a ¢ test to com-
pare the sex differences on the outcome variable
LIBQ_tot and conducts a two-way ANOVA to

compare the effects of role and sex on LIBQ_tot.
In the following section, we will demonstrate
how to use t.test() and other functions to repro-
duce the methods discussed in Chapter 17 and
related methods with R and MBESS. More
specifically, we will discuss how to compute
standardized effect sizes, confidence intervals for
standardized mean differences, and sample size
planning in the ¢ test context in R.

After loading the data set LibQUAL, the func-
tion class() is used to determine the attribute of
the object LibQUAL.

R> class(LibQUAL)
[1] “data.frame”

Thus, LibQUAL is a data frame, which is a special
type of data structure where numeric and cate-
gorical variables can be stored. We also need to
verify whether Sex has the attribute of a factor
because only when a variable is defined as factor
can that variable be used as a grouping variable:

R> class(LibQUAL$Sex)
[1] “integer”

Because the vector Sex is specified as an inte-
ger, it needs to be converted to a factor for analy-
sis. Notice that the dollar sign (§) is used to
extract a named column from the data frame. We
use the function as.factor() to convert the
attribute into a factor and then redefineSex in the
data frame as a factor (notice that the dollar sign
is used on both sides of the assignment operator)
so that we can easily perform the two-group ¢ test:

R> LibQUAL$Sex <— as.factor(LibQUAL$Sex)

R> class(LibQUAL$Sex)

[1] “factor”

R> t.test(LIBQ_tot ~ Sex, data=LibQUAL,
var.equal=TRUE)

Two Sample t-test

data: LIBQ_tot by Sex

t =-0.2381, df = 64, p—value = 0.8125

alternative hypothesis: true difference in
means is not equal to 0

95 percent confidence interval:

—0.7682029 0.6045665

sample estimates:

mean in group O mean in group 1

6.893636 6.975455

Notice that the use of the function t.test() on
two independent samples is a bit different from



the other two kinds of ¢ test. A formula much
like that discussed in the Im() function is used
where the dependent variable, LIBQ_tot, is pre-
dicted by the grouping variable, Sex. This
implies that the outcome variable LIBQ_tot is
modeled by the grouped variable Sex, and the
model formula form in t.test(Qis the general for-
mat used in R for model specification.

From the output, the ¢ statistic is —.2381 with
64 degrees of freedom with a corresponding
(two-sided) p value of .8125. The mean of the
first group (labeled 0) is 6.894, and the second
group (labeled 1) is 6.975 in the sample. The
95% confidence interval for the population
mean difference is

Cl,, = [0.768 < i, — 1, < 0.605].

Alternatively, we can perform the two-group
t test in a similar fashion as was done with the
one-sample t test and the paired-samples ¢ test.
That is, we can specify the form

t.test(x, y, mu, var.equal=TRUE,
conf.level=.95)

where x and y are the two independent groups
of data of interest. Notice that compared to
paired-samples ¢ tests, we exclude the command
paired=TRUE but add the command
var.equal=TRUE.

Confidence Intervals for Effect Sizes
Related to the Group Means and
Group Mean Differences

Although the confidence interval from the
t test output provides helpful information,
at times what is of interest is the standardized
mean difference and its corresponding confi-
dence interval. A commonly used effect size in
the t test is the standardized mean difference
(e.g., Cohen, 1988), d, which is defined as

d:u (7)

N

in the sample, where M, is the mean of Group 1,
M, is the mean of Group 2, and s is the square
root of the pooled variance, assumed equal
across groups in the population.

The function smd() in MBESS can be used to
calculate the standardized mean difference. It is
most commonly specified in the form
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smd(Group.1, Group.2)

where Group.l and Group.2 are the particular
data of interest from Group 1 and Group 2,
respectively. Hence, specifying smd() as follows
returns the standardized mean difference
between the scores on the LIbQUAL+" total scale
of the female group (Sex=0) and of the male
group (Sex=1):"

R> smd(Group.1=LibQUAL[1:33,4],
Group.2=LibQUAL[34:66,4])
[1] -0.05862421

To obtain the unbiased estimate of the popu-
lation standardized mean difference (d is slightly
biased), the option Unbiased=TRUE can be used:

R> smd(Group.1=LibQUAL[1:33,4],
Group.R=LibQUAL[34:66,4], Unbiased=TRUE)
[1] -0.05793406

The correction used in the function smd()
yields an exactly unbiased statistic (based in part
on the gamma function), whereas that used in
Thompson (Chapter 17, this volume) yields an
approximately unbiased statistic (see Hedges &
Olkin, 1985, for derivations and discussion of
the exact and approximately unbiased statistics).

We can obtain the confidence interval for the
standardized mean difference with the function
ci.smd() in MBESS. Its basic specification is of
the form

ci.smd(smd, n.1, n.2, conf.level)

where smd is the observed standardized mean dif-
ference; n.1 and n.8 are sample sizes of Group 1
and Group 2, respectively; and conflevel is the
desired confidence interval coverage. Therefore, to
construct the 95% confidence interval for the stan-
dardized mean difference in the scores on the
LibQUALA" total scale of the female group and the
male group, ¢i.smd() could be specified as follows:

R> ci.smd(smd=—0.05862421, n.1=33,
n.2=33, conf.level=.95)

$Lower.Conf.Limit.smd

[1]1-0.541012

$smd

[1]1 -0.05862421

$Upper.Conf.Limit.smd

[1] 0.4242205
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Power Analysis for ¢ Test

It is important to consider statistical power
when designing a study, as the power of a statis-
tical test is the probability that it will yield statis-
tically significant results (e.g., see Cohen, 1988,
for a review). Since power is a function of Type
I error rate, standardized effect size, and sample
size, after specifying the Type I error rate and
standardized effect size, the necessary sample
size given a specified power value or power given
a specified sample size can be determined. The
function power.t.test() in R is used to plan nec-
essary sample size. It is usually specified as

power.t.test(power, delta, sd, type)

where power is the desired power level, delta is the
(unstandardized) mean difference, sd is the pop-
ulation standard deviation, and type is the type of
the t test (“one.sample” for one sample, “two.sam-
ple” for two independent sample, and “paired” for
paired sample). Note that when sd=1 (which is
the case by default), delta can be regarded as the
standardized mean difference. For example, we
can get the necessary sample size for each group
to achieve a power = 0.8 for a two-sample ¢ test
when the standardized mean difference is 0.5:

R> power.t.test(power=.8, delta=.5,
type="two.sample”),

Two-sample t test power calculation

n=63.76576

delta =0.5

sd=1

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

Thus, after rounding to the next larger integer, it
can be seen that a per group sample size of 64 is
necessary to achieve a power = 0.8 (128 is thus
the total sample size). Alternatively, power can
be determined when n is specified (instead of
power) in the power.t.test() function.

AIPE for Mean Differences and
Standardized Mean Differences

The AIPE approach to sample size planning
can be used in a similar manner, where what is of
interest is the necessary sample size for the
expected confidence interval width to be sufficiently

narrow, optionally with some assurance that the
confidence interval will be sufficiently narrow
(Kelley & Rausch, 2006). For example, suppose
the population standardized mean difference is
.50, and it is desired that the total 95% confidence
interval width be .50. The ss.aipe.sm() function in
MBESS could be specified as follows:

R> ss.aipe.smd(delta=.5, conf.level=.95,
width=.50)
[1] 187

Because the standard procedure is for the
expected width, which implies that roughly 50%
of the time, the confidence interval will be wider
than desired, a desired degree of assurance can
be incorporated into the sample size procedure
to specify the probability that a confidence
interval will not be wider than desired. For
example, suppose one would like to be 99%
assurance that the computed confidence interval
will be sufficiently narrow. The ss.aipe.smd(
function could be specified as follows:

R> ss.aipe.smd(delta~.5, conf.level=.95,
width=.50, assurance=.99)
[1] 133

ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is a method to com-
pare the means of two or more groups. The func-
tion for fitting an ANOVA model in R is aov(),
whose usage is very similar to that of thelm() func-
tion illustrated for the multiple regression examples.
The difference between aov() and Im() is that, when
summary() is used to present the model summary,
aov() objects return an ANOVA table, whereas Im()
objects return a regression table. There is a function
anova(), not to be confused with aov(), that is used
to return the ANOVA table of an existing object or
a comparison between nested models.

The basic specification of the function for
ANOVA is aov() and is used in the following
manner:

aov(formula, data)

where both arguments are the same as those
in ImQ. Note that the grouping variable in the
formula must have one or more factors (ie.,
groups) identified. For example, to perform
ANOVA on the LibQUAL+™ data, where the
hypothesis is that no mean differences exist in the



effects of Role on the outcome variable, LIBQ_tot,
consider the following specification of a0v():

R> LibQUAL.aov.Role <— aov(LIBQ_tot ~ Role,
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The object LibQUAL.aov.Role contains the
necessary information to report results, but it
does so in only a limited way. The results of
interest (i.e., the ANOVA table) are obtained by
using either summary() or anova() on the object

data=LibQUAL). fitted by a0v0):
R> summary(LibQUAL.aov.Role)

Df Sum Sq Mean Sq F value Pr(GF)
Role 2 2.698 1.349 0.6961 0.5023
Residuals 63 122.072 1.938
R> anova(LibQUAL.aov.Role)
Analysis of Variance Table
Response: LIBQ_tot

Df Sum Sq Mean Sq F value Pr(GF)
Role 2 2.698 1.349 0.6961 0.5023
Residuals 63 122.072 1.938

We can also use Im() to conduct an ANOVA
on the previous example (notice the F-statistic

at the end of the output):

R> LibQUAL.Im.Role <— Im(LIBQ_tot ~ Role,

as both ANOVA and regression are special cases
of the general linear model. However, the sum-
mary() function for an Im object does not return
an ANOVA table; instead, it returns a regression

data = LibQUAL) table:
R> summary(LibQUAL.Im.Role)
Call:
Im(formula = LIBQ_tot ~ Role, data = LibQUAL)
Residuals:
Min 1Q Median 3Q Max
-B.11R27 -0.4835 0.2084 0.7965 1.9795
Coefficients:

Estimate Std. Error t value Pr(>[t))
(Intercept) 6.7927_"7 0.296775 22.888 <Re-16 ***
Role? -0.0023173 0.419703 -0.005 0.996
Role3 0.427727 0.419703 1.019 0.312

Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 **’0.05‘/0.1‘¢1
Residual standard error: 1.392 on 63 degrees of freedom
Multiple R-Squared: 0.02162, Adjusted R-squared: -0.009439
F-statistic: 0.6961 on 2 and 63 DF, p-value: 0.5023 . ..
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Because the Im() function was used, the sam-
ple multiple correlation coefficient, Multiple R-
Squared, and the adjusted multiple correlation
coefficient, Adjusted R-squared, are made avail-
able with the summary() function.

Confidence Intervals for Standardized
Effect Sizes for Omnibus Effects

The effect size for the pth factor of the
ANOVA model is defined as

2
o
n, = (8)
Or
or
2
o
=2 )
d)p Oé ’
where 67, is the variance due to factor p, 6°;is the

total variance of the dependent variable, and 67
is the within-group variance of the dependent
variable (Fleishman, 1980; Kelley, 2007a; Steiger,
2004)." Due to the structure of the effect size,n’,
is the proportion of variance in the dependent
variable accounted for by the grouping factor,
and ¢? is the signal-to-noise ratio. The MBESS
package contains functions to calculate confi-
dence intervals for these quantities.

The function ci.pvaf() in the MBESS pack-
age can be used to calculate the confidence
limits for the proportion of variance in the
dependent variable accounted for by the
grouping variable (i.e., n%). Its basic specifica-
tion is of the form

ci.pvaf(F.value, df.1, df.2, N, conf.level=0.95)

where F.value is the observed F value from fixed
effects ANOVA for the particular factor, df.1 is
the numerator degrees of freedom for the F test,
df.2 is the denominator degrees of freedom, N is
the sample size (which need not be specified for
single-factor designs), and conf.level is the con-
fidence interval coverage. To obtain the 95%
confidence interval for nzp in the example we
used when discussing the function aov(),
ci.pvaf() should be specified as follows.

R> ci.pvaf(F.value=0.6961, df. 1=R, df.2=63,
N=66)

$Lower Limit.Proportion.of. Variance.
Accounted.for

(110

$Upper.Limit.Proportion.of. Variance.Accounte
d.for

[110.1107225

The function c¢i.snr() in MBESS can be used to
obtain the confidence limits for the signal-to-
noise ratio (i.e., (bzp). Its basic specification is of
the form

ci.snr(F.value, df.1, df.2, N, conf.level=0.95),

where all the arguments are the same as those
of ci.pvaf(). To obtain the 95% confidence
interval for ¢2 from the example we used when
discussing aov(), ci.snr() should be specified
as follows:

R> ci.snr(F.value=0.6961, df.1=2, df.2=63,
N=66)

$Lower Limit.Signal.to.Noise.Ratio

[1]10

$Upper.Limit.Signal.to.Noise.Ratio

[110.1245084

Confidence Intervals for Targeted Effects

Although the omnibus F test often addresses
an important research question, it is many times
desirable to perform follow-up comparisons in
an effort to examine specific targeted effects.
The ci.c() function from MBESS can be used to
form confidence intervals for the population
contrasts in an ANOVA setting. Its basic specifi-
cation is of the form

ci.c(means, error.variance, c.weights, n, N,
conf.level)

where means is a vector of the group means,
error.variance is the common variance of the
error (i.e., the mean square error), c.weights is a
vector of contrast weights, 1l is a vector of sam-
ple sizes in each group, N is the total sample size
(which need not be specified in a single-group
design), and conf.level is the confidence interval



coverage. For example, to obtain the 95% confi-
dence interval for the difference between the
mean of students (weighted mean of undergrad-
uate and graduate) versus the mean of faculty in
the example we used when discussing aov(), ci.c
would be specified as follows.

R>
ci.c(means=c(6.792727,6.790454,7.220454),
c.weights=c(1/%, 1/8,-1), n=c(2%,2%,22),
error.variance=1.859, conf.level=.95)

$Lower.Conf. Limit.Contrast

[1]1-1.140312

$Contrast

[1] —0.4288635

$Upper.Conf.Limit.Contrast

[1] 0.282585

The function ci.se() in MBESS can be used
to form confidence intervals for the popula-
tion standardized contrast in an ANOVA
setting. Its basic specification is of the same
form as ci.c(), except that the standardized
contrast and confidence limits are returned.
For example,

R>
ci.se(means=c(6.792727,6.790454,7.220454),
error.variance=1.859, c.weights=c(-1, 1/,
1/2), n=c(R2,2%,2R), conf.level=.95)

$Lower.Conf Limit.Standardized.Contrast

[1] -0.3570958

$Standardized.contrast

[1]10.1560210

$Upper.Conf.Limit.Standardized.Contrast

[1] 0.6679053

LoNGITUDINAL DATA ANALYSIS WITH R

Longitudinal research has become an important
technique in the BESS because of the rich set of
research questions that can be addressed with
regards to intra- and interindividual change
(e.g., Collins & Sayer, 2001; Curran & Bollen,
2001; Singer & Willett, 2003). Multilevel models
(also called hierarchical models, mixed-effects
models, random coefficient models) are a
commonly used method of modeling and
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understanding change because these models
explicitly address the nested structure of the
data (e.g., observations nested within individual,
individual nested within group, etc.). The nlme
package (Pinheiro et al., 2007) provides power-
ful methods for analyzing both linear and non-
linear multilevel models.

We will use the data set Gardner.LD in the
MBESS package for illustration purposes. The
data set Gardner.LD contains the performance
data of 24 individuals, who were presented
with 420 presentations of four letters and were
asked to identify the next letter that was to be
presented. The 420 presentations were (arbi-
trarily it seems) grouped into 21 trials of 20
presentations. Twelve of the participants were
presented the letters S, L, N, and D with prob-
abilities .70, .10, .10, and .10, respectively, and
the other 12 were presented the letter L with
probability .70 and three other letters, each
with a probability of .10. The analysis of longi-
tudinal data in nlme requires data to be coded
in person-period (Singer & Willett, 2003) form
(also known as the “the univariate way”) so
that each person has a row for each of the dif-
ferent measurement occasions. There are four
variables in the Gardner.LD data set: ID, Score,
Trial, and Group. Because each participant had
21 trials, the dimension of the data matrix is
504 (24 x 21) by 4. As an initial step after load-
ing the nlme package and calling into the ses-
sion the Gardner.LD data, it is desirable to
group the data using the groupedData() func-
tion, which contains not only the data but
also information on the nesting structure of
the design:

R> data(Gardner.LLD)
R> grouped.Gardner.LD <— groupedData
(Score ~ Trial|ID, data=Gardner.LLD)

The formula Score ~ Trial|ID implies that the
response variable, Score, is modeled by the pri-
mary covariate, Trial, given the grouping factor,
ID. In longitudinal data, the primary covariate
that is monotonically related to time (e.g., time
itself, grade level, occasion of measurement,
etc.) and the grouping factor indicates the vari-
able used to denote the individual. After creating
the groupedData object, we can use plot() to plot
individual trajectories.
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Figure 34.11

R> plot(grouped.Gardner.LD)

Because information on the nesting structure is
contained within groupedData object, the plot()
function creates trajectories conditional on each
individual in separate plots.

However, it is sometimes desired to plot the
trajectories in a single plot to help visualize the
amount of interindividual differences in
change. The vit() function in MBESS provides
the plot with all trajectories in a single figure.
Consider the following application of the vit()
function:

R> vit(id="ID”, occasion="Trial”",
score="“Score”, Data=Gardner.LLD, xlab="Trial")

Similar figures with other options can be
obtained with the xyplot() function from the lat-
tice package (Sarkar, 2006). Figure 34.12 shows
that the change curves for most individuals are

The growth trajectories of 24 participants in the Gardner learning data.

nonlinear, starting at relatively low point and
growing toward the upper value of 20.

After plotting the data, it is decided to use a
logistic change curve to model the trajectories
(a negative exponential model should also be
considered). The model selected is defined as

by

i (10)
1+ exp[—(t; — e

i = 020/ x]

where y; is the score for individual 7 at time j;
is the jth trial for individual % ¢, ¢,, and ¢5; are
parameters for individual i; and €, is the error
for the ith individual at the jth measurement
occasion. The nlme package enables the user to
use several self-starting functions for commonly
used nonlinear regression models. We will use
the S8logis() function within the nlsList() func-
tion to obtain parameter estimates for each of
the individuals. This can be done with the fol-
lowing commands:
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Figure 34.12  The growth trajectory of each participant in the Gardner learning data in a grouped plot.
R> NLS.list.GL <— nlsList(SSlogis, grouped.Gardner.LLD)
R> NLS.list.GL
Call:
Model: Score ~ SSlogis(Trial, Asym, xmid, scal) | ID
Data: grouped.Gardner.LD
Coefficients:
Asym xmid scal
20.64888 -0.39425400 25.9868490
25.82947 10.77112398 39.0163528
14.00626 1.19170594 3.3132692
18 13.76810 1.69643789 1.1114158
19 NA NA NA
9 14.67500 2.8'7314499 3.2330142
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16 15.09849
17 43.4418%
6 NA
10 16.73215
14 15.99992
20 15.93180
Rl 16.41431
16.98242
17.70834
12 17.43223
Q3 18.17980
2 17.39742
4 19.60291
11 18.94723
13 18.11099
15 18.10627
Q2 19.93583
24 20.12397
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2.95021742 2.7440494
-69.37127304 -08.6832435
NA NA
0.99038220 0.4381405
1.02285958 0.8565851
3.20708423 1.3398499
R.42'709904 0.7902158
2.88241004 3.0970538
-2.30174516 7.1434532
2.578077_21 3.8061267
-2.16624638 6.0792346
2.28047778 1.0706019
3.90643041 2.4649680
-3.54633016 3.6815169
3.42193123 19878506
3.84541898 3.4853045
9.39892560 2.0708870
-0.05064117 3.4446175

Degrees of freedom: 462 total; 396 residual
Residual standard error: 1.73849

The individuals are fitted using a separate
(three-parameter) logistic model to each subject
(the ID number is in the first unmarked col-
umn). The model from the SSlogic() function in
the current example shows the following:

Score ~ SSlogis(Trial, Asym, xmid, scal) | ID

and thus the fitted model becomes

Asym,

. . , (11
1 + exp[—(Trial; — xmid;)/scal;]

Score; =

where Asym represents the asymptote, xmid rep-
resents the value of trial (or time, more gener-
ally) at the inflection point of the curve, and scal
is the scale parameter. The trajectory of
Individual 17 differs considerably from the
others individuals and from the logistic model,
which is why this individual’s parameter esti-
mates differ so considerably from the others.
Note that both Individuals 6 and 19 do not

have parameter estimates because the logistic
model failed to converge. Examination of the
plot reveals that the logistic change model does
not adequately describe the trajectories of
Individuals 6 and 19 (a negative exponential
change model would be more appropriate).
Specification of the subset.ids argument in the
vit() function allows specific individual IDs to
be plotted, which can be helpful for identifying
misfits.

The nlsList model is useful when the goal is
to model the growth trajectory of a particular
fixed set of individuals. However, when interest
is in estimating a multilevel model with fixed
effects and covariance structure—to examine
the variability within and among individuals—
the function nlme() can be used.

Since we already have a fitted nlsList() object
(NLS.list.GL) for each individual, we can input
that object into the function nlme(), where
starting values are automatically obtained. To
examine the results, consider the following
commands:



R> nlme.GL <— nlme(NLS.list.GL)
R> summary(nlme.GL)
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Nonlinear mixed-effects model fit by maximum likelihood

Model: Score ~ SSlogis(Trial, Asym, xmid, scal)
Data: grouped.Gardner.LD

AIC
2201.701

Random effects:
Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Level: ID

BIC
2243.926

logLik
-1090.850

Structure: General positive-definite, Log-Cholesky parametrization

StdDev

2.084844
1.988619
1.033261

Asym
xmid
scal

Residual 1.75023%7
Fixed effects: list(Asym ~ 1, xmid ~ 1, scal ~ 1)

Value Std.Error

16.062330
2.002424
1.619961

0.4400112
0.42'77958
0.2422403

Asym

xmid

scal

Correlation:
Asym xmid

0.379

0.490

xmid
scal 0.125
Standardized Within-Group Residuals:
Min Ql
-8.25058923 -0.59251518

Number of Observations: 504
Number of Groups: 24

Med Q3
0.05021871

Corr

Asym xmid
0.399

0.522 0.231

DF t-value p-value

478
478
478

36.50437 0
489118 0
6.68742 0

Max

0.60113672 4.23964442

From the output, information about fixed
effects, random effects, and the fit of the model
is available. Using the object obtained from the
nlsList() in nlme() automatically considers each
of the fixed effects to be random. This can be
modified by specifying fixed and random effects
explicitly with the fixed and random options
within nlme().

To visually examine the residuals, the follow-
ing commands can be used:

R> plot(nlme.GL)
R> qgnorm(nlme.GL, abline=c(0,1))

The residual plot shows that the assumption of
equal variances across time seems reasonable.
This assumption can be relaxed with additional
specification in nlme(). A normal QQ plot for
the residual shows that the distribution of resid-
uals seems normal.
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Figure 34.13
change model.

We can also plot the fitted trajectories for each
individual by applying plot() to certain functions
of a fitted nlme() object, which provides impor-
tant information about potential model misfits:

R> plot(augPred(nlme.GL, level=0:1))

This section serves as only a brief introduction
to the nlme package. Readers interested in more
comprehensive discussion on analyzing mixed
effects models (both linear and nonlinear) with
the nlme package are referred to Mixed-Effects
Models in S and S-PLUS (Pinheiro & Bates, 2000).
Also helpful is Doran and Lockwood (2006), who
recently provided a tutorial on linear multilevel
model with the nlme package, with special
emphasis on educational data.

CONCLUSIONS

We hope that we have successfully illustrated R
as a valuable tool for performing a wide variety

Scatterplot for standardized residuals as a function of fitted values for the fitted logistic

of statistical analyses. Of course, R can do much
more than has been presented. The use of R and
the plethora of tools made available with R
packages should be considered by researchers
who perform statistical analyses. One thing not
mentioned is an implicit benefit of R, that many
times R code can be slightly modified from
analysis to analysis for similar data and research
questions, which greatly facilitates future analy-
ses. For researchers who often perform the same
type of analysis with different data, such a bene-
fit can save a great deal of time.

We know from experience that many statisti-
cians and quantitative methodologists within the
BESS use R for their research. Such research is at
times implemented in collaborative efforts with
substantive researchers, where R is used to imple-
ment the particular method. Having R as a com-
mon language would be beneficial in such
collaborative relationships. We also know from
experience that R is beginning to be used in grad-
uate courses in the BESS at well-known institu-
tions, both in “first-year graduate statistics”
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Observed values (circles), individuals’ fitted values (dashed line), and population estimates of

change curve (solid line) for the logistic change model applied to the Gardner learning data.

sequences and (more commonly) for advanced
statistics classes. Thus, more and more future
researchers will have at least some exposure to
statistical analyses implemented in R. Evidence is
thus beginning to mount that R will be even more
important and widely used in the coming years
than it is today. Thus, there is no time like the
present to begin incorporating R into one’s set of
statistical tools.

R cannot do everything, and we do not
want to imply that it can. For some techniques,
R is quite limited. A large portion of the statis-
tical procedures implemented within R has
come from mathematical statisticians and sta-
tisticians working outside the BESS. Since such

individuals do not use some of the methods
that are important to researchers within the
BESS, some methods important to BESS
researchers have not yet been implemented in
R. However, as more packages become avail-
able that implement methods especially useful
for the BESS, such as MBESS, the “missing
methods” will continue to decrease in quan-
tity. We realize that not everyone will immedi-
ately download, install, and start using R.
However, we do hope that researchers will be
open to using the program, realize that it is not
as difficult as it might initially seem, and con-
sider making it part of their repertoire of
statistical tools.
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NoTES

1. The “community of R users,” freely available
downloadable books, documentation, mailing lists,
and software downloads are available at the R Web
site: http://r-project.org.

2. He was once editor (1993-1997) of the
Journal of Educational [now and Behavioral]
Statistics.

3. Like R, S-Plus is a program based on the
S language. S-Plus is a proprietary program owned
by Insightful Corporation. R and S-Plus share a
common history because of the S language, but they
are ever growing further apart.

4. This data set has been made available in the
MBESS R package. For those who did not create
prof.salary.R in the previous sections, after loading
MBESS, the following will load the data:
data(prof.salary).

5. Note that RR.k_X.without.k is equal to
1 — Tolerance,, and R k_X.without.k is equivalent to

1
1-—,
Tk

where r,, is the kth diagonal element of the inverse of
the covariance matrix of the K regressors (Harris,
2001).

6. Actually, Maxwell (2000) describes a specific
correlation structure. That correlation structure
implicitly defines the values used in the chapter for
illustrative purposes via definitional formulas.

7. Note that this result differs slightly from that
reported in Maxwell (2000), which is 113. The
discrepancy is because of rounding error in the
calculations necessary to obtain the squared multiple
correlation coefficients and because of the rounding
error implicit in Cohen’s (1988) tables, which were
used to obtain the noncentrality parameter. Given
the specified correlation matrix, number of
predictors, and desired power, 111 is the exact value
of necessary sample size.

8. Interestingly, 69 other students were asked to
do the same task, except that the students estimated
the length of the room in feet. The results were
shown not to be significant, ¢ = .4624(68), p = .65
(with 95% confidence limits of 40.69, 46.70; the
actual length was 43 feet).

9. Preece (1982) criticized the way Gosset used
the Cushny and Peebles (1905) data to illustrate a
paired-samples ¢ test. Although we tend to agree with
Preece, we used the data because of their historical
importance. Also, it should be noted that the data
reported in Gosset’s work contain a typographical
error, in that there was a miscoded datum (but
correct summary statistics). We used the correct data
as reported in Cushny and Peebles (1905).

10. Note that the result is slightly different from
that in Thompson’s example (see Chapter 17, this
volume), which is —0.064. This discrepancy comes
from rounding error. If we use the means and the
standard deviations reported in Thompson explicitly
in smd(), the result will be the same:

R> smd(Mean.1=6.98, Mean.2=6.89, s.1=1.322,
5.2=1.472, n.1=33, n.8=33)
[1]10.06433112

11. Thompson (Chapter 17, this volume)
denotes the effect sizes for one-way ANOVA as 1
(multiple R-squared) and ®’ (adjusted R-squared).
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