
Introduction to MATLAB:
Applications to Data Science in Finance

2022

University of Glasgow
Adam Smith Business School

Hormoz Ramian1

1Correspondence: hormoz.ramian@glasgow.ac.uk

1

hormoz.ramian@glasgow.ac.uk


Contents

1 Getting Started 3
1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Variable Types 8
2.1 Numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Characters and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Data: Import & Export 12
3.1 Local Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 External Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Exporting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Visualization 16

5 Appendix 17

2



1 Getting Started

Financial and economic decisions are driven by several and intertwined determinants. A software
routine, defined as a collection of machine-executable instructions, assists analysts to examine
such multi-dimensional characteristics more efficiently. Assistance provided by software rou-
tines has become an exceedingly more valuable part of any empirical or analytical analysis as the
number of determinants contributing to desired outcomes of interest are expanding.

This handout serves as a brief overview to introduce basic features needed to develop a soft-
ware routine in MATLAB language with a focus on working with financial and economic con-
ceptual frameworks and datasets. A more comprehensive description of the software including
examples and routines is provided in Attaway (2013).

1.1 Prerequisites

While no prior programming knowledge is needed to access the learning outcomes associated
with this text, prior familiarity with matrix calculus and basic statistics is recommended. As
the user you will need to install the software either via an institutional subscription such as the
university2, an employer or directly from the MathWorks3.

• Ensure you use university credentials to access the installation resources when completing
the installation process.

• Installation process requires around 25GB of free space otherwise it may stop unexpectedly.
• The most recent versions of the software are 2022a and 2021b. Either of these are suitable

for any application in data science.

1.2 Environment

Matlab launches for the first time with a default appearance illustrated in Figure (1). The launch
window comprises the following 8 main components4:

1. Command Window — This component is the first channel of interaction with the software
where, first, instructions (software commands) can be entered and second, executed out-
comes are displayed. This component provides a quick access to software’s computational
abilities, defining new variables, recalling previously defined variables, and in general inter-
acting with the software in various ways such as accessing help files and documentations.
1.1. As the first example, users are able to enter doc to access the entire documentation

home. Alternatively, entering this command followed by the name of any specific
command enables the user to access its documentation e.g. doc clear prompting the
software to navigate to documentations provided for the clear command.

1.2. While the above example leads to Matlab opening an additional window to demon-
strate documentations, most commands entered within the command window lead to
instant execution and print out of the output in the same window. For instance, en-
tering pwd prompts the software to display an output, in this case showing the current
default selected working directory. The most recent output in the command window
is always stored in a temporary variable labelled as ans:

1 >> pwd
2 ans =
3 'D:\ Users '

2https://www.gla.ac.uk/myglasgow/it/software/statistics/
3https://uk.mathworks.com/products/matlab.html
4https://uk.mathworks.com/help/matlab/getting-started-with-matlab.html

3

https://www.gla.ac.uk/myglasgow/it/software/statistics/
https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/help/matlab/getting-started-with-matlab.html


1

2 34

5

6

7 8

Figure 1: Matlab Default Appearance

where ’D:\Users’ is the answer provided to command pwd. This answer is stored in
ans as a variable available to access for later use under the workspace component (item
3 described below). Entering the name of the variable ans inside the command window
instructs the software to recall and print out its value on the command window. Note
that when a subsequent command in the command window is executed, the result of
the new output will replace the original values inside ans.

Suppressing the screen print out into the command window can be carried out by using a
semi-colon ; (e.g. pwd;) after each entered command. This is a helpful tip since repeatedly
printing out results into the command window is often uninformative and slightly slows
down the software. Suppressing the results when possible, over many instances can con-
tribute to speed up programmes particularly when a routine is extensively long.

2. Editor — This component enables users to enter ‘multiple’ lines of instructions without ex-
ecuting them one at a time. This component serves an important role to design and develop
longer routines which can be executed as a combined set of instructions. For example, a user
may wish to develop a routine to import data, apply transformations, generate summary
statistics and save the output as an exported file based on multiple executed commands.
2.1. As a basic example, we are able to write the following five-line programme to instruct

the software to clear all existing variables in the memory via the command clear. This
is an essential way to avoid receiving conflicting computational results when develop-
ing a routine in the software and need to reset the memory and begin from a clean start-
ing point. clear only removes the contents stored in the software memory (specifically
everything inside ‘Workspace’ described under item 3 below) while keeping the rou-
tines developed inside the Editor intact. The second line labelled clc removes all print
outs available on the Command Window while keeping values inside the Workspace
and Editor intact. The command on the third line close all instructs the software
to close all currently open figures produced by the software. The command on the
fourth line cd("c:\") instructs the software to change the current working directory
to a new location specified inside the quotations. This is an essential command partic-

4



ularly when working with data files, which instructs the software to relocate a default
directory where external files e.g. datafiles can be accessed by only calling their files
names without specifying their locations. It always is a very good programming habit
to check the current working address repeatedly to ensure the software is properly
instructed to access and save resources (datafiles, other supplementary routines, ex-
ported material, etc.) in an organised fashion.

1 clear
2 clc
3 close all
4 cd('c:\')

Note that the above four commands often form the first part of most routines in Matlab
since they enable the user to start using the software with a cleared memory, cleared
screen, closed figures and at the intended working directory.

2.2. As a follow up to an earlier note — when a command cd("...") is used to instruct the
software to relocate to an intended working directory (e.g. cd("c:\")), the results can
be verified by using pwd leading to the the Command Window to show the specified
intended location. This is a trivial task but often worth double checking to ensure the
command is correctly executed. For example, the intended working directory may
be mis-entered or the software may have been unable to successfully switch to the
intended location, leading to many subsequent errors since none of the resources in
this location can be accessed when the switch is not completed.

3. Workspace — This component provides the user with an overview of all existing informa-
tion stored in the software memory for access (referred to as variables). Variables can be
created in several ways. Each variable is a useful resource to save ongoing information on
the side to access and use on subsequent steps. Variables in Matlab can be defined as nu-
merical values (numbers, percentages, binary values, or arrays of numbers such as vectors
and matrices), text (characters), tables (collection of numerical and textual) and many other
types. Workspace provides a complete overview of everything available in memory which
can be stored in the following ways:
3.1. Similar to an earlier illustration, values directly entered via the Command Window can

be stored into the Workspace when any output is stored in the default variable ans:

1 pwd

leading to the Workspace to show the following where the variable name is ans, its
value is cd("c:\"), and its icon demonstrates its type as a character type storing a
directory address.

3.2. For further illustration, additional variable characteristics can be accessed from the
Workspace Window by checking other features provided. For example size is an infor-
mative characteristic that informs the user about the layout of numerical arrays (e.g. a
2× 2 matrix x where its icon indicates the type as a numerical variable).

5



in the illustration above, the second variable is manually entered into the Workspace
Window by entering the following command in the Command Window:

1 x=[1 ,2;3 ,4]

3.3. Importing a dataset into the software also leads to appearance of new variables avail-
able to access via the Workspace Window. Furthermore, when carrying out computa-
tions, generated results are stored into this window to examination and later use.

3.4. An individual variable can be removed from the Workspace by using the clear com-
mand followed by the variable name clear x or clear x ans to simultaneously remove
multiple variables.

4. Current Directory — This component provides an overview of contents inside the selected
working directory which the user may need to interact with such as datafiles, supplemen-
tary routines, and any other resources.

5. Address Field — This component is a graphical interface to navigate between local re-
sources via the software and is linked to the earlier command cd("c:\") and pwd.

6. Main Toolbar — This section provides graphical user interfaces to built-in facilities such
and Import Data used to browse the local resources and access data, or creating a new page
within the Editor Window via New Script.

7. Menu Tabs — This section provides a wider access to graphical user interfaces such as
Editor tab which shows additional essential features such as Run used to execute commands
inside the Editor Window.

8. Quick Access Toolbar — Lastly, this section enables the user to create shortcuts to any
desired interfaces.

1.3 Packages

Packages are independent toolboxes designed to carry out specialized computational tasks (neu-
ral networks, deep learning, etc.). The installation process provides an option to select certain
Matlab packages or install all available packages. While a package offers a pre-defined frame-
work to carry out computations, all such computations can also be obtained based on a user
developed routine. For example, one may rely on a package to obtain a regression coefficients
or alternatively develop the regression’s computational framework to obtain the same results.
Packages offer a quicker way to obtain results, however, given their pre-defined natures, they
may not offer adequate flexibility needed for particular tasks thus a user may need to develop a
computational framework with the purpose of maintaining intended flexibility.

6



Nevertheless, it is considered a good programming practice to develop routines and check
the results against pre-defined packages whenever possible as a validation tool before further
developing a routine towards a more complex purpose.

In some cases, a user may need to explicitly check whether a specific package is properly
installed within the software. This is done by entering ver command in the Command Window
leading to the software to print out all installed packages in the same window.

Each package includes a number of individual routines (functions) accessible to use for special-
ized computations within that field. In data science we often use the following package:

• Curve Fitting Toolbox
• Data Acquisition Toolbox
• Database Toolbox
• Econometrics ToolBox
• Financial Instrument Toolbox
• Financial Toolbox
• Global Optimization Toolbox
• Optimization Toolbox
• Parallel Computing Toolbox

7



• Statistics and Machine Learning Toolbox
If a tool box is not installed, you are able return to the operating system’s software installation
section and modify the software to include an individual package without altering the rest of
software.

2 Variable Types

Economic and financial data are defined in various types such as numerical values and texts.
Matlab enables users to store information in the Workspace in the following ways that include
numerical and textual values and additional types based a combination of numbers and texts.

Matlab offers a wide range of variable types suited for various settings such as timeseries, geo-
graphical, etc. While this handout describes the following essential types, a full description of all
variable types are discussed in the references.5

2.1 Numeric

Any information that is quantifiable as a number, where it can be sorted based on a decreasing-
increasing order (or vice versa) can be stored as a numerical variable. Numerical variables can
be stored as scalars (a single number) or multi-dimensional arrays (vectors and matrices). Con-
sider the following example where a numerical variable collects four features associated with a
firm-level dataset: This dataset can be imported directly into the Workspace. However, as an il-

Firm Cash Holding (%) Financial Constraint (Stress) Performance (ICR)
1 30.00 -2.5 0.2
2 10.00 -3.5 0.4
3 30.00 -5.5 0.1
4 10.00 -0.5 0.3

lustration, the following part shows how these values can be manually entered into the software:

1 clear
2 clc
3 close all
4 cd('c:\ ')
5 firm = [1;2;3;4]
6 cashholding = [30;10;30;10]
7 financialconstraint = [2.5;3.5;5.5; -0.5]
8 performance =[0.2;0.4;0.1;0.3]

5https://uk.mathworks.com/help/matlab/data-types.html

8

https://uk.mathworks.com/help/matlab/data-types.html


where the first four lines are used to prepare the environment with a cleared memory, following
by line five firm = [1;2;3;4] that instructs the software to create a 4× 1-dimensional column vec-
tor with numbers 1, 2, 3 and 4 and store them in a variable labelled as firm. More specifically, the
term column vector indicates that the array is set up as a 4× 1 object by using the square brackets
[ ] and use of semi-colons ; to separate numbers. Each semi-colon instructs the numerical array
to enter the next value on a new row. Contrary to this example, a 1× 4-dimensional row vector
can be created by following the same steps, except using a comma ‘,’ instead of a semi-colon. For
instance entering [1, 2, 3, 4] leads to a 4× 1-row vector since each comma instructs the soft-
ware to treat the following number as an entry under a new column. Note that as an exception,
commas can be removed — to form an array with numbers separated with simple spaces e.g. [1
2 3 4] which instructs Matlab to place each value after a space under a new column.

Variable names such as firm, cashholding, financialconstraint and performance can be
chosen from any standard naming characters, however, variable names cannot:

• start with a number, e.g. a new variable name 2firm is unacceptable to the software. As
a general rule variable name can include numbers such as firm2 but may not begin with
numbers.

• include spaces, e.g. cash holding is an unacceptable naming whereas cash holding in-
cluding an underscore is acceptable.

Note that assigning values to any existing variable in the workspace leads to replacing the values,
without a warning from the software.

Each of the variables defined earlier, firm, cashholding, financialconstraint and performance
is a 4× 1-column vector. We are able to create a new variable that collects all four variables into a
new 4× 4 matrix. To this end, we treat each existing variable as an input and create a larger array
by placing each 4× 1 vector next each other:

1 data = [firm cashholding financialconstraint performance ]

which instructs the software to create a new variable data by arranging the existing four variables
to show:

1 >> data = [firm cashholding financialconstraint performance ]
2
3 data =
4
5 1.0000 30.0000 2.5000 0.2000
6 2.0000 10.0000 3.5000 0.4000
7 3.0000 30.0000 5.5000 0.1000
8 4.0000 10.0000 -0.5000 0.3000

Note that this is a convenient approach to combine multiple values in a single variable. However,
a numerical array is unable to assign column names to identify what is stored under each column
and this has to be noted by the user as a side information (meta-data associated with the numerical
array). Furthermore, a numerical array, as the name suggests does not allow for any characters
or textual entries such as company names that may be of use within financial analysis. A Table
described later in the text enables the users to both assign column names and store both numeric
and textual values at the same time under the same variable.

A numerical array, whether an individual number, a vector (1-dimensional row or column) or
a matrix (2 or higher dimensional array), is summarised by the identifiers of its rows, columns
and when possible higher dimensions. For instance, data defined earlier is a 4× 4-dimensional
array, where each of its elements can be accessed in the following fashion:

1 >> data (1 ,1)
2 ans =
3 1

9



4
5 >> data (1 ,2)
6 ans =
7 30
8
9 >> data (2 ,1)

10 ans =
11 2
12
13 >> data (4 ,4)
14 ans =
15 0.3000

as a generalization, multiple values also are accessible at once, where line number 1 in the follow-
ing case is accessing the first row and simultaneously both first and second column values.

1 >> data (1 ,[1 2])
2 ans =
3 1 30
4
5 >> data (1 ,[1 2 3])
6 ans =
7 1.0000 30.0000 2.5000
8
9 >> data ([2 3] ,[1 2 3])

10 ans =
11 2.0000 10.0000 3.5000
12 3.0000 30.0000 5.5000

the fifth line accesses elements on the first row, and 1st-3rd columns at the same time and the last
case on line nine, accesses six elements placed on rows 2-3 and columns 1-3 at the same time.

As a more comprehensive way to access element within a numerical array, the following illus-
trates:

1 >> data (1 ,1:4)
2 ans =
3 1.0000 30.0000 2.5000 0.2000
4
5 >> data (1: end , [2 ,4])
6 ans =
7 30.0000 0.2000
8 10.0000 0.4000
9 30.0000 0.1000

10 10.0000 0.3000

where the first instance data(1,1:4) accesses elements on the first row and 1st-to-4th columns at
the same time and the second instance data(1:end, [2,4]) accesses elements identified on the
‘1st to the last’ row, and 2nd & 4th columns.

Similar to the construction of variable data, extracted values accessed from this variable can
be stored in a new variable. For example, date2 = data(1:end, [2,4]) is generated as a new
4× 2 numerical array collecting all elements from the 1st-to-last rows of data, and columns 2 and
4, corresponding to cash holdings and performances of all firms 1-4.

We are able to replace an individual element on a variable e.g. data by pointing to the specific
element that requires its value to be replaced and equating the expression with the new value:

1 >> data (3 ,2) = 39.99
2
3 data =
4 1.0000 30.0000 2.5000 0.2000

10



5 2.0000 10.0000 3.5000 0.4000
6 3.0000 39.9900 5.5000 0.1000
7 4.0000 10.0000 -0.5000 0.3000

noting that the third element on the second column is changed to 39.99 to amend the cash to total
asset ratio previously stored in the data.

Numerical arrays can be added, subtracted, multiplied and inverted according to the elemen-
tary matrix operations. This requires the arrays to be consistent in terms of their dimensions,
for instance a 4× 1-column vector can be added or subtracted from another 4× 1-column vector
where the addition or subtraction operations applied on an element-by-element correspondence
basis. For instance:

1 >> cashholding2 = cashholding + [10;12;18;16]
2
3 cashholding2 =
4
5 40
6 22
7 48
8 26

leads to adding values 10, 12, 18 and 16 to cash to total assets ratios across firms 1-4. Each numer-
ical variable can be multiplied or divided by an individual multiplier

1 >> cashhodling3 = 0.95 * cashholding
2
3 cashhodling3 =
4
5 28.5000
6 9.5000
7 28.5000
8 9.5000

where the number 0.95 is multiplied to each individual elements inside cashholding to form a
new amended variable cashholding3.

2.2 Characters and Strings

These variable types are designed to work with non-numeric data such as names (individuals,
companies, countries) or textual data (government announcements) and any data that is defined
within an alphanumeric domain.

For example, a routine can define the working directory as a variable, noting that quotation
signs must include the contents:

1 >> wd = 'c:\ matlab \'
2 wd =
3
4 'c:\ matlab \'

This leads to the workspace to show a new variable called wd as a character type storing the di-
rectory address. Since this strand of variables is not directly quantifiable, contrary to the numeric
type, mathematical operations are not readily applicable.

11



2.3 Tables

This variable type enables the user to collect a combination of numeric and textual data under
the same variable. Aside from accommodating for various types, tables offer additional com-
putational functionalities particularly suited for data scientific and statistical analyses. Example
below illustrate a table where inputs are selected from an earlier numeric variable data together
with manually defined RowNames and VariableNames leading to Table1 as a new variable. Note
that manually entered ‘three-dots’ ... at the end of each line instructs the software to break the
line and read the continuation of the same command from the next line. This is a helpful practice
to divide longer commands across multiple lines to enhance visual inspection:

1 >> table1 = table(firm , cashholding , financialconstraint , performance , ...
2 'RowNames ', {'Company A'; 'Company B'; 'Company C'; 'Company D'}, ...
3 'VariableNames ', {'Firm ID ','Cash Holding ', 'Financial Constraint ', 'Performance '})
4
5 table1 =
6 Firm ID Cash Holding Financial Constraint Performance
7 _______ ____________ ____________________ ___________
8
9 Company A 1 30 2.5 0.2

10 Company B 2 10 3.5 0.4
11 Company C 3 30 5.5 0.1
12 Company D 4 10 -0.5 0.3

Given the heterogeneous nature of tables, recalling variable values requires the following ap-
proach. To recall each column under a table, the name of the table and its column have to be pro-
vided and attached using a ‘.’ e.g. table1.("Cash Holding"). As an exception, when a column
name includes no spaces, the values can be recalled in a simpler way e.g. table1.Performance
without the quotation marks.

3 Data: Import & Export

Datasets can be imported to Matlab’s workspace both locally (from a hard drive) or directly from
a remote source (an online data repository or data warehouse). Each approach offers its own
characteristics suited for different purposes. Local access is a more common approach as it offers
more flexibility and more security when working with proprietary data whereas a remote access
offers a more convenient way and centralised approach particularly for when working as part of
a team.

3.1 Local Access

Importing data into Matlab can be carried out via specific commands or a graphical user interface.
The nature of a dataset, its structure, and future workflow associated with its purpose determine
which approach is more suitable. Matlab’s graphical user interface, however, provides an option
to import data for a quick use, as well as, auto-generating the associated scripts for a future use.
This graphical user interface is accessible via Import Data section under HOME tab depicted below,
followed by a browse window prompting the user to select a data file often provided in a common
format such as comma-delimited (.csv), Excel (.xls) or (.xlsx), or alternatively Matlab’s own
storage format (.mat).

12



The subsequent step involves previewing the dataset within a prompted window displayed in
Figure (2). At this stage, the user has the following options to pre-modify the dataset from the
Output Type section to instruct the software about the intended variable type that the data will
be stored in as within the workspace environment. This choice should be made based the nature
of data, for example, if the data comprises of only numerical values, a Numeric Matrix is an ideal
choice, whereas when working with a dataset including both textual and numerical values, then
Table serves as a more suitable choice.

The section highlighted in the following illustration (Figure 2) as ‘Import Selection’ enables the
user to either import the data instantly into the workspace by choosing ‘Import Data’ that appears
as the first item. In this case, the user needs to repeat the steps every time the imported dataset
into the software is altered or reset e.g. when using clear command. Alternatively, data can be
imported together with an auto-generated script associated with these chosen preferences by the
software via selecting ‘Generate Script’ that appears as the third option in order to use the routine
to repeat data importing stage. This option provides a basis for the user to avoid repeating the
manual approach particularly when developing an extended computational routine which may
require the user to reset and restart the programme multiple times.

The resulting imported data together with an auto-generated scripts will be readily accessible
to the user.

3.2 External Data Acquisition

This approach offers a basis to users to bypass downloading and subsequently loading the data
into the software via the process described above. Instead, data can be accessed and imported
directly into Matlab’s workspace based on Matlab’s Data Acquisition Toolbox. More specifically,
each data providing platform offers a connection function that is configured to remote access their
data repositories, customise certain sub-samples of the available data and load the data. Aside
from individual connections, Matlab offers a general purpose connection that is applicable to a
wider range of data acquisition via fetch command.6

The following example demonstrates using fred(.) routine to directly access the Federal Re-
serves St. Louis Economic Data Warehouse. This method requires providing requested variable
names, start and end dates and additional search parameters.

1 clc
2 clear

6https://uk.mathworks.com/help/datafeed/fred.fetch.html

13

https://uk.mathworks.com/help/datafeed/fred.fetch.html


Figure 2: Matlab Data Import Window

Provider Data Source
CRSP US Stocks www.crsp.com
Commodity Systems Inc. Futures www.csidata.com
Datastream Stocks, bonds, currencies, etc. www.datastream.com/product/has/
IFM Futures, US Stocks www.theifm.org
Olsen & Associates Currencies, etc. www.olsen.ch
Trades and Quotes US Stocks www.nyse.com/marketinfo
US Federal Reserve Currencies, etc. www.federalreserve.gov/releases/

Table 1: Common online data repositories in economics and finance

3 close all
4
5 % Define connection to request data from FRED data server :
6 c = fred('https :// research . stlouisfed .org/fred2/');
7 sd = '01/01/1948 '; % Start Date
8 ed = '01/12/2018 '; % End Date
9

10 % FRED Series
11 s1 = 'UNRATE '; % Civilian Unemployment Rate
12 s2 = 'INDPRO '; % Industrial Production Index
13 s3 = 'USRECM '; % NBER -based Recession Indicators for the United States
14 s4 = 'NASDAQCOM '; % NASDAQ Composite Index
15 s5 = 'DJIA '; % Dow Jones Industrial Average
16 s6 = 'RU3000TR '; % Russell 3000 Total Market Index
17
18 x1 = 'GDPDEF ';

14

 www.crsp.com 
 www.csidata.com 
 www.theifm.org 
 www.olsen.ch 


1943 1971 1998 2026
0

5

10

15

0

50

100

150

Unemployment Rate
US Industrial Product

1971 1984 1998 2012 2026
0

1000

2000

3000

4000

5000

6000

7000

8000

NASDAQ Composite Index
Russell 3000 Index

1943 1971 1998 2026
0

5

10

15

0

2000

4000

6000

Unemployment Rate
NASDAQCOM

1943 1971 1998 2026
0

20

40

60

80

100

120

0

1000

2000

3000

4000

5000

6000

US Industrial Product
NASDAQCOM

Figure 3: Depicted data based on data acquisition routine described in subsection (3.2).

19 x2 = 'CPIAUCSL ';
20
21 % Receives data from FRED connection c and the specified FRED series :
22 d1 = fetch(c,s1 ,sd ,ed);
23 d2 = fetch(c,s2 ,sd ,ed);
24 d3 = fetch(c,s3 ,sd ,ed);
25 d4 = fetch(c,s4 ,sd ,ed);
26 d5 = fetch(c,s5 ,sd ,ed);
27 d6 = fetch(c,s6 ,sd ,ed);
28
29 X1 = fetch(c,x1 ,sd ,ed);
30 X2 = fetch(c,x2 ,sd ,ed);
31
32 close(c)
33 % For further comments see:
34 % https :// uk. mathworks .com/help/ datafeed / functionlist .html

3.3 Exporting Data

Exporting data from Matlab’s workspace requires the user to indicate which variable from the
workspace is exported into a comma-delimited .csv, Excel .xls or .xlsx by using the following
command where data in writematrix(data,’example.xls’) indicates the selected variable and
example.xls is the name of exported file saved within the current directory.7 Alternatively, the
entire workspace contents can be exported via save(’example’) where the resulting exported
file is stored as example.mat.8

7Recall pwd which prints out the current working directory assumed by the software.
8This can later be re-loaded via load(’example’) into the workspace, noting that the working directory must be

correctly set up.

15



4 Visualization

Graphical representations of datasets and conceptual frameworks provide informative perspec-
tive to assist data scientific method. Matlab enables users to depict variables in various ways,
using histograms, scatterplot, geographical maps, etc. The following part describes two of the
most commonly used Matlab diagrams. A comprehensive description of all Matlab diagrams are
provided in the references.9

Histogram A histogram or a frequency plot provides information about the distribution of a
variable across possible observed outcomes versus their counts over that specific outcome. For
example the diagram below illustrates how much cash & cash equivalent assets are held by firms
(in logarithmic units). The horizontal axis shows these possible outcomes and the vertical axis
shows how many firms in the data are holding such amounts as described by their counts between
0-350 per each bar.

1 histogram (log(x.CCE))
2 xlabel ('Cash and Cash Equivalent (in log units)')
3 ylabel ('Frequency ')
4 title('Histogram Example ')

The variable used in this example x.CCE refers to a column value under a table variable, im-
ported based on a dataset imported earlier.

Scatterplot A scatterplot is a simple graphical illustration to examine the relationship between
two variables by visually inspecting their values versus each other. The following example illus-
trates firms cash holding versus free cash flows (both in logarithmic units) across all observations
in the dataset. In this case, the diagonally upward appearance statistically suggests a positive
relationship between the two variables.

1 scatter (log(x.CCE),log(x.FCF))
2 xlabel ('Cash and Cash Equivalent (in log units)')
3 ylabel ('Free Cash Flow (in log units)')
4 title('Scatterplot Example ')

9https://uk.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html.

16

https://uk.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html
https://uk.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html


References

Attaway, S. (2013), MATLAB: a practical introduction to programming and problem solving, 3rd edn,
Butterworth-Heinemann Ltd, Waltham, MA.

5 Appendix

The following summary by MathWorks provides a brief overview of most commonly used com-
mands and functions by Matlab developers.

17



mathworks.com/help/matlab

MATLAB® Basic Functions Reference
MATLAB Environment

clc Clear command window

help fun Display in-line help for fun

doc fun Open documentation for fun

load("filename","vars") Load variables from .mat file

uiimport("filename") Open interactive import tool 

save("filename","vars") Save variables to file

clear item Remove items from workspace

examplescript Run the script file named 
examplescript

format style Set output display format

ver Get list of installed toolboxes

tic, toc Start and stop timer

Ctrl+C Abort the current calculation

Operators and Special Characters
+, -, *, / Matrix math operations

.*, ./ Array multiplication and division  
(element-wise operations)

,̂ .̂ Matrix and array power

\ Left division or linear optimization

.', ' Normal and complex conjugate 
transpose

==, ~=, <, >, <=, >= Relational operators

&&, ||, ~, xor Logical operations  
(AND, NOT, OR, XOR)

; Suppress output display

... Connect lines (with break)

% Description Comment

'Hello' Definition of a character vector

"This is a string" Definition of a string

str1 + str2 Append strings

Defining and Changing Array Variables
a = 5 Define variable a with value 5

A = [1 2 3; 4 5 6]
A = [1 2 3
     4 5 6] 

Define A as a 2x3 matrix
“space” separates columns
“;” or new line separates rows

[A,B] Concatenate arrays horizontally

[A;B] Concatenate arrays vertically

x(4) = 7  Change 4th element of x to 7

A(1,3) = 5  Change A(1,3) to 5

x(5:10)  Get 5th to 10th elements of x

x(1:2:end) Get every 2nd element of x (1st to last)

x(x>6)  List elements greater than 6

x(x==10)=1  Change elements using condition

A(4,:)  Get 4th row of A

A(:,3)  Get 3rd column of A

A(6, 2:5)  Get 2nd to 5th element in 6th row of A

A(:,[1 7])=A(:,[7 1]) Swap the 1st and 7th column

a:b  [a, a+1, a+2, …, a+n] with a+n≤b

a:ds:b  Create regularly spaced vector with  
spacing ds

linspace(a,b,n)  Create vector of n equally spaced values 

logspace(a,b,n)  Create vector of n logarithmically spaced 
values

zeros(m,n)  Create m x n matrix of zeros

ones(m,n)  Create m x n matrix of ones

eye(n)  Create a n x n identity matrix

A=diag(x) Create diagonal matrix from vector

x=diag(A)  Get diagonal elements of matrix

meshgrid(x,y) Create 2D and 3D grids

rand(m,n), randi Create uniformly distributed random  
numbers or integers

randn(m,n) Create normally distributed random 
numbers

Special Variables and Constants
ans Most recent answer

pi π=3.141592654… 

i, j, 1i, 1j Imaginary unit

NaN, nan  Not a number (i.e., division by zero)

Inf, inf  Infinity

eps Floating-point relative accuracy

Complex Numbers
i, j, 1i, 1j Imaginary unit

real(z) Real part of complex number

imag(z) Imaginary part of complex number

angle(z) Phase angle in radians

conj(z) Element-wise complex conjugate

isreal(z) Determine whether array is real



mathworks.com/help/matlab

Elementary Functions
sin(x), asin Sine and inverse (argument in radians) 

sind(x), asind Sine and inverse (argument in degrees) 

sinh(x), asinh Hyperbolic sine and inverse (arg. in 
radians)

Analogous for the other trigonometric functions:  
cos, tan, csc, sec, and cot

abs(x) Absolute value of x, complex magnitude

exp(x)  Exponential of x

sqrt(x), nthroot(x,n) Square root, real nth root of real numbers

log(x)  Natural logarithm of x

log2(x), log10 Logarithm with base 2 and 10, respectively

factorial(n) Factorial of n 

sign(x)  Sign of x

mod(x,d) Remainder after division (modulo)

ceil(x), fix, floor Round toward +inf, 0, -inf

round(x) Round to nearest decimal or integer

Tables
table(var1,...,varN) Create table from data in variables 

var1, ..., varN

readtable("file") Create table from file

array2table(A) Convert numeric array to table

T.var Extract data from variable var

T(rows,columns),
T(rows,["col1","coln"])

Create a new table with specified 
rows and columns from T

T.varname=data Assign data to (new) column in T

T.Properties Access properties of T

categorical(A) Create a categorical array

summary(T), groupsummary Print summary of table 

join(T1, T2) Join tables with common variables

Plotting
plot(x,y,LineSpec)
Line styles:  
-, --, :, -.
Markers:  
+, o, *, ., x, s,  d
Colors:  
r, g, b, c, m, y, k, w 

Plot y vs. x  
(LineSpec is optional)
LineSpec is a combination of 
linestyle, marker, and 
color as a string.
Example: "-r"  
= red solid line without markers

title("Title") Add plot title

legend("1st", "2nd") Add legend to axes

x/y/zlabel("label") Add x/y/z axis label

x/y/zticks(ticksvec) Get or set x/y/z axis ticks

x/y/zticklabels(labels) Get or set x/y/z axis tick labels

x/y/ztickangle(angle) Rotate x/y/z axis tick labels

x/y/zlim Get or set x/y/z axis range

axis(lim), axis style Set axis limits and style

text(x,y,"txt") Add text

grid on/off Show axis grid

hold on/off Retain the current plot when 
adding new plots

subplot(m,n,p), 
tiledlayout(m,n)

Create axes in tiled positions

yyaxis left/right Create second y-axis

figure Create figure window

gcf, gca Get current figure, get current axis

clf Clear current figure

close all Close open figures

Common Plot Types

Plot Gallery: mathworks.com/products/matlab/plot-gallery

Tasks (Live Editor)

Live Editor tasks are apps that can be added to a live script to interactively 
perform a specific set of operations. Tasks represent a series of MATLAB 
commands. To see the commands that the task runs, show the generated 
code.

Common tasks available from the Live Editor tab on the  
desktop toolstrip:

•	 Clean Missing Data •	 Clean Outlier

•	 Find Change Points •	 Find Local Extrema

•	 Remove Trends •	 Smooth Data



mathworks.com/help/matlab

Integration and Differentiation

integral(f,a,b) Numerical integration  
(analogous functions for 2D and 3D)

trapz(x,y) Trapezoidal numerical integration

diff(X) Differences and approximate derivatives

gradient(X)  Numerical gradient

curl(X,Y,Z,U,V,W) Curl and angular velocity

divergence(X,..,W) Compute divergence of  
vector field

ode45(ode,tspan,y0) Solve system of nonstiff ODEs

ode15s(ode,tspan,y0)  Solve system of stiff ODEs

deval(sol,x) Evaluate solution of differential equation 

pdepe(m,pde,ic,... 
bc,xm,ts) 

Solve 1D partial differential equation

pdeval(m,xmesh,... 
usol,xq) 

Interpolate numeric PDE solution

Numerical Methods
fzero(fun,x0) Root of nonlinear function

fminsearch(fun,x0) Find minimum of function

fminbnd(fun,x1,x2) Find minimum of fun in [x1, x2]

fft(x), ifft(x) Fast Fourier transform and its inverse

Interpolation and Polynomials

interp1(x,v,xq) 1D interpolation  
(analogous for 2D and 3D) 

pchip(x,v,xq) Piecewise cubic Hermite polynomial 
interpolation

spline(x,v,xq)  Cubic spline data interpolation

ppval(pp,xq) Evaluate piecewise polynomial

mkpp(breaks,coeffs) Make piecewise polynomial

unmkpp(pp) Extract piecewise polynomial details

poly(x) Polynomial with specified roots x

polyeig(A0,A1,...,Ap) Eigenvalues for polynomial eigenvalue 
problem

polyfit(x,y,d) Polynomial curve fitting

residue(b,a) Partial fraction expansion/decomposition

roots(p) Polynomial roots

polyval(p,x)  Evaluate poly p at points x

polyint(p,k) Polynomial integration

polyder(p) Polynomial differentiation

Programming Methods

Functions

% Save your function in a function file or at the end 
% of a script file. Function files must have the
% same name as the 1st function
function cavg = cumavg(x) %multiple args. possible
    cavg=cumsum(vec)./(1:length(vec)); 
end

Anonymous Functions

% defined via function handles
fun = @(x) cos(x.̂ 2)./abs(3*x);

Control Structures

if, elseif Conditions

if n<10
    disp("n smaller 10")
elseif n<=20
    disp("n between 10 and 20")
else
    disp("n larger than 20")

Switch Case

n = input("Enter an integer: ");
switch n
    case -1
        disp("negative one")
    case {0,1,2,3} % check four cases together
        disp("integer between 0 and 3")
    otherwise
        disp("integer value outside interval [-1,3]")
end % control structures terminate with end

For-Loop

% loop a specific number of times, and keep  
% track of each iteration with an incrementing 
% index variable
for i = 1:3
    disp("cool");
end % control structures terminate with end

While-Loop

% loops as long as a condition remains true
n = 1;
nFactorial = 1;
while nFactorial < 1e100
    n = n + 1;
    nFactorial = nFactorial * n;
end % control structures terminate with end

Further programming/control commands

break  Terminate execution of for- or while-loop

continue Pass control to the next iteration of a loop

try, catch Execute statements and catch errors



© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. 
Other product or brand names may be trademarks or registered trademarks of their respective holders.

mathworks.com/help/matlab

Matrices and Arrays
length(A) Length of largest array dimension 

size(A) Array dimensions

numel(A) Number of elements in array

sort(A) Sort array elements 

sortrows(A) Sort rows of array or table 

flip(A) Flip order of elements in array

squeeze(A) Remove dimensions of length 1

reshape(A,sz) Reshape array

repmat(A,n) Repeat copies of array

any(A), all Check if any/all elements are nonzero

nnz(A) Number of nonzero array elements

find(A) Indices and values of nonzero elements

Linear Algebra

rank(A) Rank of matrix

trace(A) Sum of diagonal elements of matrix

det(A)  Determinant of matrix

poly(A)  Characteristic polynomial of matrix

eig(A), eigs Eigenvalues and vectors of matrix (subset)

inv(A), pinv Inverse and pseudo inverse of matrix

norm(x) Norm of vector or matrix 

expm(A), logm Matrix exponential and logarithm

cross(A,B) Cross product

dot(A,B) Dot product

kron(A,B) Kronecker tensor product

null(A) Null space of matrix

orth(A) Orthonormal basis for matrix range

tril(A), triu Lower and upper triangular part of matrix

linsolve(A,B) Solve linear system of the form AX=B

lsqminnorm(A,B) Least-squares solution to linear equation

qr(A), lu, chol Matrix decompositions

svd(A) Singular value decomposition

gsvd(A,B) Generalized SVD

rref(A) Reduced row echelon form of matrix

Symbolic Math*
sym x, syms x y z Declare symbolic variable

eqn = y == 2*a + b Define a symbolic equation

solve(eqns,vars) Solve symbolic expression 
for variable

subs(expr,var,val) Substitute variable in expression

expand(expr) Expand symbolic expression

factor(expr) Factorize symbolic expression

simplify(expr) Simplify symbolic expression

assume(var,assumption) Make assumption for variable

assumptions(z) Show assumptions for 
symbolic object

fplot(expr), fcontour, 
fsurf, fmesh, fimplicit

Plotting functions for 
symbolic expressions

diff(expr,var,n) Differentiate symbolic expression

dsolve(deqn,cond) Solve differential  
equation symbolically

int(expr,var,[a, b]) Integrate symbolic expression

taylor(fun,var,z0) Taylor expansion of function

Descriptive Statistics
sum(A), prod Sum or product (along columns)

max(A), min, bounds Largest and smallest element

mean(A), median, mode Statistical operations

std(A), var Standard deviation and variance

movsum(A,n), movprod, 
movmax, movmin, 
movmean, movmedian, 
movstd, movvar

Moving statistical functions
n = length of moving window

cumsum(A), cumprod,
cummax, cummin

Cumulative statistical functions

smoothdata(A) Smooth noisy data

histcounts(X) Calculate histogram bin counts

corrcoef(A), cov Correlation coefficients, covariance

xcorr(x,y), xcov Cross-correlation, cross-covariance

normalize(A) Normalize data

detrend(x) Remove polynomial trend

isoutlier(A) Find outliers in data

*requires Symbolic Math Toolbox


	Getting Started
	Prerequisites
	Environment
	Packages

	Variable Types
	Numeric
	Characters and Strings
	Tables

	Data: Import & Export
	Local Access
	External Data Acquisition
	Exporting Data

	Visualization
	Appendix

